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Abstract
In this article, we scrutinize volatility spillover between oil and individual non-
energy commodities during crisis and non-crisis periods. We use high-frequency 
data to capture the effects of both the global financial crisis (2008) and the COVID-
19 pandemic between 2008 and 2022. To this end, we utilize wavelet coherence 
analysis to diagnose the magnitudes of dynamic co-movements and lead-lag effects 
between commodities. Our results provide evidence of strong coherence between oil 
and the majority of individual non-energy commodities during both crises. Precious 
metals were generally found to exhibit heightened levels of co-movement with oil as 
opposed to other non-energy commodities. On the other hand, weak co-movements 
were found between oil and a few commodities, namely soy, wheat, zinc, and tin. 
The lead-lag effects of oil on agricultural commodities, base metals, and precious 
metals were evident, especially during crisis periods. However, aluminium and pre-
cious metals, especially gold, silver, and palladium, also had a lead-lag effect on 
oil at different points in time, including during the pandemic. We further utilize 
dynamic frequency-domain connectedness for capturing pairwise volatility spillover 
indices, with the results providing evidence of heightened volatility spillovers dur-
ing turbulent times. Our findings have significant implications for retail investors, 
portfolio managers, and policymakers.
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Introduction

The phenomenon of volatility connectedness between asset classes has piqued 
the interest of practitioners, scholars, and policymakers (Sun et  al. 2021). This 
can be attributed to the growing financialization of major commodities, including 
oil, agricultural commodities, and metals (Zaremba et al. 2021). Capital has been 
pouring into commodity futures from investors with no apparent commercial 
intent in these commodities over the years (Dutta and Noor 2017). Investors have 
been increasingly seeking assets that are uncorrelated with other investments to 
hedge against financial risk (Maghyereh and Abdoh 2022). This is especially vital 
for portfolio managers who are continuously searching for safe-haven assets to 
mitigate the heightened risks caused by exogenous shocks such as COVID-19 
(Umar et  al. 2021a, 2022a, b). As such, commodities markets present investors 
with a variety of tradeoffs between asset classes, enabling them to design well 
diversified portfolios (Umar et  al. 2021b). These commodities employ different 
pricing mechanisms as opposed to those of financial assets such as stocks, caus-
ing the two asset groups to be less correlated. Hence, mixing stocks and com-
modities in a portfolio may help to yield a better risk-return trade-off as opposed 
to focusing on stocks alone. The knowledge of volatility spillovers is important 
not only for investors, but also for regulators and policymakers, because fluctu-
ating commodity prices can have a significant impact on macroeconomic health 
(Umar et al. 2021c).

Commodity markets have become more interconnected over time, though 
the nature of these interconnections may differ. The energy sector, led by oil, is 
among the main pivots of commodity markets and forms a crucial portfolio com-
ponent for investors (Tiwari et al. 2021; Umar 2017). The past two decades have 
experienced rising levels of volatility in commodities markets, with oil being the 
dominant commodity (Naeem et al. 2020). Researchers are now looking into the 
nature and degree of volatility connectedness between oil and other commod-
ity classes. Oil and agricultural commodities both form a significant portion of 
the commodity market, and they are interconnected in various ways (Dinku and 
Worku 2022; Umar et al. 2021a). For instance, capital-intensive agricultural sys-
tems, fertilization, and transportation of agricultural products all rely heavily on 
oil. Moreover, the rising use of corn and soybeans to manufacture biofuels due to 
the volatility of crude oil has made them increasingly connected (Wright 2014). 
On the other hand, oil price shocks affect production and transportation costs of 
industrial metals. Higher oil prices cause governments to increase interest rates, 
which adversely affect the base metals and steel reliant construction sector (Ham-
moudeh and Yuan 2008). Oil and precious metals are inextricably connected, ris-
ing oil prices increases general price levels in the economy. High inflation in turn 
increases the demand for precious metals since they are used by policy makers as 
inflationary hedge tools (Shah et al. 2021).

This paper adds to the empirical evidence on the volatility connectedness of 
the oil, agricultural commodity, and metal markets in various ways (Umar et al. 
2021a, b; Zaremba et al. 2021). Findings on commodity connectedness have been 
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mixed and ambiguous (Tiwari et al. 2019; Dutta and Noor 2017; Nazlioglu and 
Soytas 2011; Reboredo and Ugolini 2016; Umar et al. 2021a, b, c, d, e). Unlike 
previous studies, we employ wavelet coherence analysis (WCA), which is a pow-
erful tool to assess dynamic lead-lag connectedness between two time series in 
different time periods, which suits best the changing nature of commodity prices 
(Aguiar-Conraria and Soares 2014). Previous studies have employed WCA to 
analyze the volatility connectedness of commodities by using low-frequency data, 
i.e., annual, monthly (Umar et  al. 2020; Tiwari et  al. 2019). To disentangle the 
multi-scale connectedness between commodity returns, we employ WCA using 
high-frequency data, i.e., daily, which enabled us to reveal crucial underlying 
patterns that may not be easily seen in weekly, monthly, or annual data (Umar 
et  al. 2021a). We also use dynamic frequency-domain network connectedness 
(DF-DNC) to investigate the precise amounts of connectedness between oil and 
non-energy commodities (Barunk and Krehlik 2018). Our sample period allows 
us to examine commodity connectedness behaviour during tranquil periods and 
periods of global economic turmoil caused by the global financial crisis (2008) 
and the COVID-19 pandemic. We present a detailed examination of the volatility 
relationship between oil and individual commodities in each of the three groups, 
namely agricultural commodities, base metals, and precious metals. This enabled 
us to unpack unique patterns in volatility spillovers between oil and individual 
commodities, unlike previous studies that performed market-wise analyses (Sun 
et al. 2021; Umar et al. 2020; Tiwari et al. 2019; Dutta and Noor 2017).

The rest of this paper is organized as follows: “Literature review” covers a brief 
review of literature on the connectedness between oil, agricultural commodities, and 
industrial metals. “Methodology” provides a description of the data, an economet-
ric model, and the methods employed in investigating the phenomenon. “Results” 
presents results from analyses; “Discussions, implications, and avenues for further 
research” covers discussions; and “Conclusions” provides conclusions.

Literature review

The literature on co-movement between commodities’ markets has been burgeoning 
since the inception of the phenomenon in the 1990s. The GFC (2008) showed the 
extent to which stock markets have become so closely connected, causing volatility 
spillover among each other and thus arousing the need for commodities to diversify 
investment portfolios (Zhang and Broadstock 2018). Commodities are also impor-
tant inputs into manufacturing processes; any price changes have significant mac-
roeconomic consequences. Despite increased investor interest in connectedness of 
commodity markets, empirical evidence on the influence of oil on non-energy com-
modities is generally mixed and a bit ambiguous (Sun et al. 2021; Dutta and Noor 
2017; Reboredo and Ugolini 2016; Umar et al. 2021a).

There has been a progressive growth in literature on the connectedness between oil 
and agricultural commodities (Umar et al. 2021a, b). However, the link between the 
two commodities still lacks clarity, which calls for more scholarly attention (Nazlio-
glu et al. 2013). For instance, Umar et al. (2021d) employed the Granger causality test 



 SN Bus Econ (2023) 3:9191 Page 4 of 27

and provided evidence to highlight how the prices of grains and wheat cause shocks 
in oil prices. Sun et al. (2021) investigated the long-term correlation between agricul-
tural commodities and oil prices. The rolling window Granger causality test was used, 
and they discovered bi-directional causality between the two commodities. Wang et al. 
(2014) also employed a Structural Vector Autoregression (SVAR) model to examine 
the co-movement between US oil prices and agricultural commodity prices and found 
a uni-directional spillover from oil to agricultural commodities. These results are com-
plimented by Mensi et al. (2014), who found a co-movement between the oil and cereal 
markets. Zhang and Qu (2015) used autoregressive moving average (ARMA) models 
to show asymmetrical effects of oil prices on agricultural product volatility, which is 
supported by Tiwari et al. 2019. Despite the evidence of co-movement between the two 
commodities, several studies have argued otherwise. Dutta and Noor (2017) employed 
the bivariate Vector Auto Regression-Generalized Autoregression Conditional Heter-
oskedasticity (VAR-GARCH) models and suggested an absence of volatility connect-
edness between oil and agricultural products. Nazlioglu and Soytas (2011) employed 
Toda-Yamamoto causality and reached a similar conclusion. These results are also sub-
stantiated by Kaltalioglu and Soytas (2009), who found no connectedness between oil 
and agricultural commodities, therefore confirming the oil and agricultural commodi-
ties connectedness neutrality hypothesis (Wiggins and Keats 2009).

Extant literature has also highlighted the connectedness between the oil and metal 
markets. For instance, Li et  al. (2021) provide evidence of strong short-term returns 
and volatility spillovers between the oil and gold markets in China. This is supported 
by Mensi et al. (2021), whose findings suggested oil to be a diversifier and a weak safe 
haven for precious metals futures. In a study by Umar et al. (2020) that employed WCA, 
evidence was presented to reveal strong co-movement between oil and base metal mar-
kets, with oil being the main volatility transmitter. Dutta (2018) investigated the co-
movement between oil and different types of metals, including industrial metals, using 
GARCH-Jump models. Their results revealed a significant volatility spillover from oil 
to industrial metals, with no evidence suggesting a similar effect on precious metals 
except for silver. However, Hammoudeh and Yuan (2008) utilized GARCH models and 
discovered volatility spillover runs from oil to precious metals alone, which debunks 
findings from other studies. In contrast, Reboredo and Ugolini (2016) observed that 
oil price volatility spillover significantly affects both industrial and precious metals. 
Zhang and Tu (2016) also explored how oil price shocks impact metal prices in China 
by employing autoregressive jump intensity (ARJI)-GARCH models and reported sig-
nificant impacts of oil price volatility on aluminium and copper prices. Their results are 
corroborated by Umar et al. (2021b) and Kaulu (2021), who provide evidence to high-
light why industrial metals are the net receivers of shocks from oil.

Methodology

Data description

This study uses data for oil, base metals, precious metals and agricultural com-
modities prices retrieved from Bloomberg and DataStream. We utilize the equally 
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weighted average of daily crude oil prices from Brent Crude, West Texas Intermedi-
ate (WTI) and Dubai Crude to create aggregate price of oil (Sun et al. 2021). For the 
case of non-energy commodities, we selected five agricultural commodities namely; 
corn, wheat, soy, oats and rice. In addition, a total of five base metals were selected 
namely; Aluminum, Zinc, Lead, Tin, Copper and Nickel. Lastly, we selected four 
precious metals namely; gold, silver, platinum and palladium. We utilized high 
frequency-daily commodity spot prices data ranging from 1st January 2008 to 31st 
October 2022. The price volatility represented by returns was calculated by using 
log  (Price1/Price0) for each commodity in each month. This time range was pur-
posely chosen to study the volatility connectedness phenomenon during tranquil 
periods as well as periods of heightened global uncertainty as a result of two major 
global crises; GFC and COVID-19. Looking at Fig. 1, interesting trends for volatil-
ity of commodity prices can be observed during the entire period.

It can be clearly seen that commodities in similar commodities exhibit nearly 
identical volatility trends over the entire sample period. This is more evident in base 
metals as opposed to other commodity groups. High volatility can be visible dur-
ing the beginning of the period which happens to be during the GFC. The other 
episode of higher volatility in commodity returns was evident from 2020 onwards 
signifying the beginning of the pandemic. Looking at individual commodities, oats 
appeared to exhibit higher volatility than other agricultural commodities during the 
entire period. For the case of base metals and precious metals, nickel and palladium 
were characterized by relatively higher volatilities than other commodities in their 
respective groups.

Analytical tools

In this current study, we are primarily interested in examining the magnitude of the 
volatility spillovers between oil and non-energy commodities. To this end, we first 
utilize WCA to analyze the co-movement and lead-lag effect between oil and indi-
vidual non-energy commodities (Umar et al. 2020; Tiwari et al. 2019). We then use 
DF-DNC analysis to calculate the precise amounts of volatility spillovers between 
commodities of interest (Maghyereh and Abdoh 2022; Barunk and Krehlik 2018).

Wavelet coherence analysis

We employ WCA analysis to examine the lead-lag effect of co-movement between 
oil and individual non-energy commodities. WCA is a bivariate framework that 
examines the interaction between different time series over a continuous time and 
frequency space (Torrence and Compo 1998). The tool can decompose a time series 
into time–frequency space in order to determine the dominant modes of variability 
and their variation pattern (Uddin et al. 2016). This is done by effectively pinpoint-
ing time periods of high and low co-movement in the time–frequency space (Agu-
iar-Conraria and Soares 2014). We employ the same procedures used by Umar and 
Gubareva (2021) to carry out WCA. WCA is built up by two components, namely, 
the cross-wave transform (CWT) and coherence (Torrence and Compo 1998). 
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Firstly, the CWT of the two time series dubbed x(t) and y(t) can be expressed in the 
form of their individual CWTs which are;  Wx

n
(u, s) and  Wy

n(u, s) as follows:

whereby; u = the location; s = the scale; * = complex conjugate
CWT captures the co-movement between the two time series, x(t) and y(t) at each 

time and frequency space. A CWT value close to one indicates a high magnitude of 
synchronization between the time series. On the contrary, a CWT value close to zero 
indicates the absence of any relationship between the time series. Then, the squared 
wavelet coherence (SWC) is computed to determine the co-movement between the 
two time series. The SWC represents the correlation coefficient in the time–fre-
quency domain, and its value ranges between zero and one. It is different from the 
ordinary Pearson correlation, which assumes both positive and negative values. It is 
calculated as follows:

whereby; S = a smoothing operator over time and frequency scale. Finally, the Wave-
let Coherence Phase Difference (WCPD) is used to differentiate between the positive 
and negative co-movements. WCPD is expressed as follows;

whereby; Im and Re are both the imaginary and real parts of the smoothed CWT.

Dynamic frequency‑domain network connectedness

We utilize the Baruník and Křehlík (2018) (BK-18) spillover index, which uses gen-
eralized forecast error variance decompositions (GFEVDs), to estimate the exact 
amounts of volatility spillovers between oil and individual non-energy commodities. 
We decompose the data using the matrix of a vector autoregressive (VAR) model 
with local covariance stationarity (Diebold and Yilmaz 2012; Bossman et al. 2022). 
The VAR(p) model is presented as follows:

whereby; φi and εi = these are coefficients of covariance matrix Π. Returns for each 
commodity are regressed against other commodities, their ρ lags and the ρ lags of 
other commodities’ returns. φ = the information holder for the relationships between 
commodities’ returns. Our VAR model is built using moving average MA(∞) when 

(1)Wxy
n

= Wx
n
(u, s) ∗ Wy

n
(u, s)

(2)R2(u, s) =
|||S
(
s−1Wxy(u, s)

)|||
2

S
(
s−1|Wy(u, s)|2) S(s−1|Wy(u, s)|2)

(3)Φxy(u, s) = tan−1Im

[
(S
(
s−1Wxy(u, s)

)
Re (S

(
s−1Wxy(u, s)

)
]

(4)Yt =

p∑
i=1

�i�t − i + �t,
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the roots of the representative equation |θ(z)| lie outside of the unit circle. This is 
expressed as follows;

whereby; Ψ(L) = an infinitely lagged polynomial.
We then re-write element “j” of GFEVD denoted by the kth variable as follows;

whereby; h = 1,…,H and σkk = Πkk. We then standardize the matrix ΘH to generate 
the following model for generating pairwise volatility spillovers;

We aggregated the pairwise volatility spillovers presented in Eq.  (7) for esti-
mating general volatility connectedness between commodities. This is shown as 
follows;

whereby; Tr{} = arithmetic summation of all elements in the matrix. Therefore vola-
tility connectedness represents FEVD’s contribution to the variables in the model. 
This enabled us to examine bi-directional connectedness between commodity mar-
ket “i” from other commodity markets “k”. The positive value from the model indi-
cates that a respective commodity is the “net transmitter,” while negative spillover 
values indicate that a commodity is a “net receiver” of volatility spillovers. A fre-
quency response function of �

�
e−i�

�
=
∑

h e−i�h �h is then created which is subse-
quently transformed by Fourier transforms �h  with i = 

√
−1 , a spectral density of Yt 

at frequency, ω can be defined as MA(∞) filtered series as follows;

Whereby; Sy(�) = the power spectrum that defined variance distribution of Yt 
over the frequency components ω. Equation (10) defines the causation spectrum 
over ω ϵ(− π;π) as follows;

(5)Yt = Ψ(L)�t
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The following weighting function is defined to obtain a natural decomposition of 
GFEVD to frequencies, we weigh F(�))j,k by the frequency share of the variance of 
the jth commodity;

We then use Eq. (12) to measure volatility spillover between commodity returns 
across different frequency bands represented as d, as d = (a;b): a;b ϵ (− π;π), a < b;

Then a scaled GFEVD mode may be constructed in the same frequency band d as 
follows;

Ultimately, the within-frequency and frequency connectivity across d are 
expressed in Eqs. (14) and (15) respectively as follows;

Results

Descriptive statistics and correlation results

Table 1 presents the descriptive statistics for daily returns of oil and non-energy 
commodities in the entire time frame of the study. The mean returns for all com-
modities are positive with the exception of oil, platinum, and oats. The positive 
returns for the majority of commodities are, however, less extreme, i.e., less than 
1%, and this is the case for all commodities that exhibit positive returns. On the 
other hand, oil and palladium both exhibit the highest standard deviations, indi-
cating higher magnitudes of volatility in these two commodities, with the former 
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being the most traded one. Looking at the difference between the maximum and 
minimum returns for each commodity, oil exhibits the biggest difference, i.e., 
− 108.441 and 19.790. This provides preliminary evidence to show higher mag-
nitudes of returns’ volatility experienced by oil, which suffered immensely dur-
ing the GFC and the first wave of COVID-19 pandemic (Maghyereh and Abdoh 
2022).

The normality diagnostics reveal some interesting facts about our data. First, 
the Jarque–Bera (JB) test for normality revealed high values that were all signifi-
cant at the 0.05 level, thus rejecting the null hypothesis of normality (Wu 2021). 
Skewness and kurtosis values for all the commodities also present evidence to 
support the non-normality of the data since they are all non-zero (Marobhe and 
Kansheba 2022). The kurtosis values for all commodities appeared to be greater 
than 3, indicating that the distributions of their returns are leptokurtic. These 
denote that their distributions are fat-tailed with many outliers, and their returns 
have a higher probability for extreme events (Kansheba and Marobhe 2022). 
The augmented-Dickey Fuller (ADF) and Phillips–Perron (PP) t-statistic values 
for all commodities’ returns were greater than their respective 0.05 values, thus 
showing the absence of unit root (Adi et al. 2022; Dickey and Fuller 1979).

In Fig. 2, we present correlation results in the form of heat maps based on the 
full sample and sub-samples covering specific events, namely the GFC, post-
GFC, and COVID-19. The full sample results show little correlation between 
oil and non-energy commodities. This is with the exception of precious metals 
and copper, which have a higher correlation with oil than other non-energy com-
modities. Silver and platinum showed higher degrees of correlation with oil as 
opposed to gold and palladium. For the case of correlations during the GFC, 
the results show a growing degree of correlation between oil and precious met-
als, with the exception of palladium. During the pandemic, there was also some 
degree of correlation between oil and corn, with other agricultural commodities 
and base metals exhibiting negligible correlations with oil.

In the post-GFC period, correlations between oil and base metals were higher 
than those in precious metals. This was especially true in the case of copper, 
nickel, and zinc, whose correlations were higher than those of other base metals. 
Palladium and platinum also showed relatively higher correlations with oil com-
pared with other precious metals. No visible correlations were present between 
oil and agricultural commodities during this period. During the pandemic, some 
degrees of correlation were observed between oil and all precious metals, as 
well as tin and copper.

Johansen co‑integration test results

We further carried out the Johansen co-integration test to examine the presence 
of a long-term association between returns on oil and individual non-energy com-
modities (Johansen 1991). In Table 2, the results are presented, and they show the 
absence of any co-integration between oil and any non-energy commodity.
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Structural breaks diagnosis results

The absence of any co-integration between oil and non-energy commodities may be 
a result of structural breaks that may be present in their returns (Chang et al. 2017). 
We therefore conducted a structural breaks test for individual time series for com-
modity returns based on Bai and Perron’s (2006) methodology, which can detect 
multiple breaks. Table 3 presents the results for this test by revealing the presence 
of at least one structural break in the returns time series for all commodities. During 
the GFC, the majority of commodities experienced structural breaks in their returns. 
Oil and gold had their structural breaks during the first quarter of 2020, which lies 
within the timeline for the first outbreak of COVID-19 that immensely affected oil 
prices (Umar et al. 2021d).

Wavelet coherence analysis results

Because of the presence of structural breaks in commodity returns, analytical tools 
that can assess dynamic/time-varying volatility connectedness between commodities 
were required. To this end, we first employed WCA to examine and visualize the co-
movement between oil and individual non-energy commodities by showing the lead-
lad effect between them (Umar et al. 2021a). We commenced by carrying out WCA 

Table 2  Johansen co-integration 
test results

When the trace statistic value is less than the 5% critical value, the 
null-hypothesis on the non-presence of co-integration is rejected

Commodities Eigen value Trace statistic 5% critical value

Oil and agricultural commodities
Oil and soy 0.08877 474.7875 6.4000
Oil and rice 0.08686 456.4528 6.4000
Oil and wheat 0.08785 420.2128 6.4000
Oil and oats 0.08691 400.0589 6.4000
Oil and corn 0.08857 439.1377 6.4000
Oil and base metals
Oil and aluminum 0.08734 424.0004 6.4000
Oil and copper 0.08775 383.226 6.4000
Oil and lead 0.08776 404.9093 6.4000
Oil and nickel 0.0908 473.3173 6.4000
Oil and tin 0.08819 447.0158 6.4000
Oil and zinc 0.08688 415.731 6.4000
Oil and precious metals
Oil and silver 0.24246 1005.1394 3.7600
Oil and gold 0.24747 1007.9521 3.7600
Oil and palladium 0.17501 345.0380 3.7600
Oil and platinum 0.26610 1005.2522 3.7600



 SN Bus Econ (2023) 3:9191 Page 14 of 27

for pairs of commodities involving oil and individual agricultural commodities, as 
visualized in Fig. 3.

The results indicate lower degrees of co-movement between oil and soy returns 
during the pre-pandemic periods, with lead-lag effects being absent. An out-of-
phase, negative co-movement was observed between the two commodities during 
the GFC alone. An out-of-phase, negative co-movement was also vivid between oil 
and rice returns during the GFC at low frequency between 256 and 1024 days. How-
ever, strong co-movements with the lead-lag effects of oil on rice were visible in 
2016 and during the second wave of the pandemic at a high frequency of between 
16 and 64  days. The other out-of-phase, negative co-movement between the two 
commodities was also evident during the second wave of COVID-19, but with the 
absence of the lead-lag effect at a similar time frequency. The results for the oil-
wheat pair show a strong out-of-phase co-movement between the pair at a low fre-
quency of between 256 and 1024 days during the GFC alone. The results further 
present evidence of the lead-lag effect of oil on wheat during the pandemic at a high 
frequency of about 64 days. A significant out-of-phase and negative co-movement 
between oil and oats was evident during the GFC at low frequency between 256 and 
1024  days. Another low-frequency out-of-phase co-movement was observed from 
2019 to mid-2020, which was during the first wave of COVID-19. However, dur-
ing the pandemic, a lead-lag effect of oil on oats was observed at a relatively higher 
frequency of about 64 days. Lastly, corn and oil exhibited an out-of-phase negative 

Table 3  Bai and Perron (2006) 
structural breaks test results

The presence of structural breaks is shown when p values of Sup. F 
statistic for individual commodities are below 0.05 level

Commodities Sup. F p value Break date (1) Break date (2)

Oil 16.671 0.0021 5/3/2018 27/04/2020
Agricultural commodities
Soy 50.329 0.0000 6/9/2010 NIL
Rice 37.474 0.0000 25/06/2016 NIL
Wheat 20.841 0.0002 6/9/2010 NIL
Oats 40.262 0.0003 7/9/2012 NIL
Corn 50.833 0.0009 5/9/2010 NIL
Industrial metals
Aluminum 21.878 0.0002 15/10/2011 NIL
Copper 84.446 0.0000 26/11/2014 NIL
Lead 7.6197 0.0647 3/10/2011 NIL
Nickel 8.1974 0.1281 9/5/2019 NIL
Tin 30.904 0.0000 3/9/2010 NIL
Zinc 5.7478 0.0353 14/05/2019 NIL
Precious metals
Silver 31.742 0.000 05/09/2010 NIL
Gold 18.533 0.000 28/03/2020 NIL
Palladium 2156.700 0.000 08/09/2010 NIL
Platinum 417.44 0.000 08/09/2010 NIL
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co-movement during the GFC as well as the COVID-19 pandemic. A lead-lag effect 
of oil on corn was observed during the early days of the GFC in 2008 at a high fre-
quency of between 4 and 16 days. Similar effects were observed towards the end of 
the GFC in 2011, at a frequency of between 16 and 64 days. The last co-movement 
with the lead-lag effect of oil on wheat was observed during the first outbreak of the 
pandemic in 2020 at a high frequency of between 4 and 16 days.

In Fig. 4, we examine the co-movement between oil and individual base metals. 
For the case of oil and aluminum, an out-of-phase co-movement was observed at a 
frequency between 16 and 64 days at the beginning of the GFC as well as towards 
the end. In mid-2014, a lead-lag effect of aluminium on oil was observed at a fre-
quency between 16 and 64. During the pandemic, a lead-lag effect of oil on alu-
minium was evident, especially during the first wave in the first quarter of 2020 
and towards the end of 2022. The WCA analysis for the oil-copper pair reveals an 
out-of-phase negative co-movement between the two commodities at low frequency 
between 256 and 1024 days. A lead-lag effect of oil on copper was evident in 2009, 
which was the height of the GFC, at a relatively higher frequency of between 16 
and 64 days, followed by similar effects towards the end of the crisis in 2011. An 
out-of-phase co-movement was also observed in 2015 at a frequency of 256 days. A 
lead-lag effect of oil on copper was visible during the second wave of the pandemic 
in 2021.

An out-of-phase co-movement in the frequency between 16 and 64 days was also 
observed between oil and lead in 2009 and 2011, which is the timeframe in which 
the GFC happened. In 2014, there was a lead-lag effect of oil on lead with a simi-
lar frequency as during the GFC period. An out-of-phase negative correlation was 
observed between the two commodities in mid-2021, which was during the second 
wave of COVID-19. A lead-lag effect of oil on lead was observed in 2022, which 
can be attributed to oil price shocks caused by the Russia–Ukraine war. In the case 
of oil and tin, a lead-lag effect of oil on tin at the 64-day frequency was evident 
during the early days of the GFC in 2008. This was followed by an out-of-phase 
negative co-movement at a similar frequency during 2009. An out-of-phase posi-
tive co-movement between the two commodities was evident in 2010, followed by 
both positive and then negative co-movements from 2015 to 2016 at a 64-day fre-
quency. No significant co-movements were observed between oil and tin during the 
pandemic. Lead-lag effects of oil on zinc were observed in 2008. This was followed 
by an out-of-phase, strong negative co-movement between the two commodities 
from 2010 to 2011, with a time frequency between 16 and 64 days. Another lead-lag 
effect of oil on zinc was evident in 2014 between the frequency of 16 and 64 days. 
Similar to tin, no significant co-movements were experienced between oil and zinc 
during the pandemic.

Lastly, in Fig.  5, we display WCA results for return co-movement between oil 
and individual precious metals. By analyzing the oil-silver pair, we can see a strong 
lead-lag effect of oil on silver between the frequencies of 16 and 64  days during 
2008. This was later reversed, with silver showing a lead-lag effect on oil at a fre-
quency ranging from 64 to 256 days. During the height of the GFC in 2009, a sig-
nificant co-movement and lead-lag effect of oil on silver was observed. Surpris-
ingly, silver exhibited a lead-lag effect on oil at a frequency between 16 and 64 days 
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during the first wave of COVID-19 in the first quarter of 2020. However, in 2021, a 
lead-lag effect of oil on silver was evident at the 64-day frequency, which was fol-
lowed by a similar effect in 2022 at both low and high frequencies of between 4 and 
16  days, which may also be associated with the oil price shocks triggered by the 
Russia–Ukraine war. In another commodity pair, oil and gold exhibited significant 
co-movement in 2010, with oil leading gold at a frequency between 16 and 64 days. 
Similar effects were observed towards the end of the GFC in late 2011. Between 
2014 and 2015, a significant out-of-phase negative co-movement was observed 
between the pair at a frequency of about 64 days. During the entire period of the 
pandemic, strong co-movement between oil and gold was evident, with gold leading 
oil at a frequency between 256 and 1024 days.

Co-movements in the oil-palladium pair were observed in 2009, with oil lead-
ing at a low frequency between 256 and 1024 days. From mid-2010 to 2011, co-
movements between the two commodities were evident with the lead-lag effect of 
oil on palladium at a high frequency of between 4 and 16 days. Out-of-phase nega-
tive co-movements can also be seen towards the end of 2011 and in the year 2013 at 
a time frequency of about 16 days. From the beginning of 2015 towards mid-2015, a 
lead-lag effect of oil on palladium was observed. In 2018, there was an out-of-phase 
negative co-movement between the pair at a frequency between 16 and 64 days. The 
last strong co-movement between oil and palladium was observed in the first half 
of 2020, with the leading effect of palladium being visible at a frequency between 
16 and 64 days. Lastly, the WCA results for the oil-platinum pair reveal strong co-
movement between the two commodities from 2009 to 2010 in the frequency range 
between 16 and 64 days. Lead-lag effects of oil on platinum were observed in this 
particular co-movement. However, towards the end of 2011, there was an out-of-
phase negative co-movement between the two commodities in the frequency range 
between 16 and 64 days. Lead-lag effects of oil on platinum were observed from 
2018 to 2019 as well as during the first half of 2020, both at a frequency of about 
64 days.

Dynamic frequency‑domain connectedness results

Using WCA, we have shown evidence of dynamic co-movement and lead-lag effects 
existing between oil and different non-energy commodities. This, however, has not 
shown the approximate degree of connectedness between the commodities in ques-
tion. We thus supplement WCA results by carrying out DF-DNC analysis to deter-
mine the spillover indices for commodity pairs. We calculate volatility spillovers 
using a short-term time horizon because we are looking at high-frequency volatility 
connectedness between commodities. Figure 8 displays the magnitudes of volatility 
spillover between oil and individual agricultural commodities. The volatility indices 
for all agricultural commodities during the GFC were higher than in the post-GFC 
period, ranging from 0 to 10%. However, volatility spillover between oil and oats 
appeared to be less as compared to other agricultural commodities. During the pan-
demic, volatility indices for all agricultural commodities reached a staggering 30%, 
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with corn subsequently exhibiting lower degrees of spillover volatility after the ini-
tial pandemic oil shock (Fig. 6).

In Fig.  7, we present trends in volatility spillover indices for the relationship 
between oil and individual base metals. During the GFC period, aluminium lead 
and tin exhibited higher magnitudes of volatility spillovers with oil, registering indi-
ces up to more than 10%. However, during the pandemic, volatility spillovers were 
slightly higher, especially between oil and base metals, namely aluminum, copper, 
lead, and nickel.

In Fig. 8, we present volatility spillover index trends between oil and individual 
precious metals. During the GFC, the volatility spillover between oil and silver was 
the greatest compared to other precious metals. During the period, volatility spillo-
ver indices for silver and oil peaked at about 20%. This was followed by palladium, 
which also exhibited slightly higher volatility spillover with oil compared to gold 
and platinum during the GFC. During the pandemic, volatility spillovers between 
oil–gold and oil–platinum commodity pairs were the highest when compared to the 
remaining precious metals following the initial shock from oil that affected all pre-
cious metals.

Fig. 6  Oil and agricultural commodities BK-18 volatility spillover index trends. Figure  6 displays the 
trends of BK-18 spillover indices generated by the dynamic frequency-domain connectedness analysis 
within the spillover band between 3.14 and 0.79. The index denotes the total information returns vol-
atility between oil and individual agricultural commodities. It is measured at a short-term horizon of 
1–4 days
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Discussions, implications, and avenues for further research

Discussions

In this current paper, we comprehensively evaluate time-varying volatility spillo-
vers between oil and non-energy commodities from both the time and frequency 
domains. Our general results suggest dynamic volatility spillovers between oil and 
the majority of non-energy commodities. Moreover, the time–frequency volatility 
spillover between oil and individual non-energy commodities varies across differ-
ent frequency bands and the sampled timeframe. These results provide evidence to 
suggest that the co-movement between oil and non-energy commodities markets is 
dynamic and non-synchronous.

Fig. 7  Oil and base metals BK-18 volatility spillover index trends. Figure 7 displays the trends of BK-18 
spillover indices generated by the dynamic frequency-domain connectedness analysis within the spillover 
band between 3.14 and 0.79. The index denotes the total information returns volatility between oil and 
individual base metals. It is measured at a short-term horizon of 1–4 days
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Looking at the oil-agricultural commodities pair, soy and wheat exhibited the 
lowest degrees of time-varying co-movement with oil, even during both crises. Sig-
nificant time-varying co-movements were observed between oil and other agricul-
tural commodities at high frequency in the time domain during both crises. Abrupt 
shocks in oil prices have been observed to trigger price shocks in agricultural com-
modities, as postulated by Taghizadeh-Hesary et al. (2019). Moreover, the lead-lag 
effect was present, with oil leading the three agricultural commodities. Our findings 
back up previous research by Wang et  al. (2014) and Mensi et  al. (2014), which 
show unidirectional co-movement of oil and agricultural commodities, with the for-
mer being the leader. The growing reliance of the agricultural sector on fossil fuels, 
especially oil, can well explicate the unidirectional volatility spillover from oil to the 
sector (Zhang et al. 2010). The findings, however, contradict the work by Sun et al. 
(2021), Umar et al. (2021d), and Barbaglia et al. (2020) that showed a bi-directional 
co-movement between the oil and agricultural commodities markets.

Our findings also present evidence of asymmetrical co-movement between 
oil and different base metals, as depicted by Dutta (2018). A less powerful co-
movement between oil-zinc and oil-tin pairs was observed only during the GFC, 
with no apparent effects seen during the pandemic. However, copper, aluminum, 
and lead each exhibited heightened co-movements at high frequencies with oil 
during both crises. The lead-lag effect of oil on these three metals during both 
crises was evident, but during specific tranquil periods, aluminium appeared to 
have a lead-lag effect on oil, thus supporting a bi-directional linkage between 
the two. Our findings therefore corroborate those of works by Umar et al. (2020, 
2021b), Kaulu (2021), Zhang and Tu (2016), Reboredo and Ugolini (2016), and 

Fig. 8  Oil and precious metals BK-18 volatility spillover index trends. Figure 8 displays the trends of 
BK-18 spillover indices generated by the dynamic frequency-domain connectedness analysis within the 
spillover band between 3.14 and 0.79. The index denotes the total information returns volatility between 
oil and individual precious metals. It is measured at a short-term horizon of 1–4 days
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Dutta (2018) that all depict powerful co-movement between oil and base metal 
markets, with oil being the main volatility transmitter. We specifically corrobo-
rate findings by Zhang and Tu (2016) that provide evidence for strong volatility 
spillovers from oil to copper and aluminium markets in China.

Finally, we examined the co-movement between oil and individual precious 
metals. Magnified volatility spillovers between oil and all four precious metals 
were evident during the GFC and COVID-19 at high frequency. This shows the 
fact that the precious metal market is highly susceptible to volatility spillovers 
as opposed to base metals and agricultural commodities. Our results corroborate 
works by Li et al. (2021) and Mensi et al. (2021) that both present a case against 
oil as a diversifier in portfolios incorporating precious metals. We further refute 
the findings by Dutta (2018) that showed silver to be the sole precious metal sus-
ceptible to oil shocks. The results further reveal bi-directional volatility spillo-
vers between oil–gold, oil–silver, and oil–palladium pairs. This piece of finding 
does not corroborate works by Reboredo and Ugolini (2016) and Hammoudeh 
and Yuan (2008) that reported uni-directional volatility spillover from oil to pre-
cious metals.

Implications and avenues for further research

Our findings provide vital implications for theory and practice. They provide 
evidence to debunk the oil-agricultural commodity connectedness neutral-
ity hypothesis (Wiggins and Keats 2009). The findings corroborate the asser-
tion that commodity price co-movement tends to intensify during volatile peri-
ods such as COVID-19 and the GFC (Sun et al. 2021; Umar et al. 2021c). The 
biggest takeaway from our findings is the fact that volatility spillovers differ 
among commodities belonging to the same market, as such, it is important to 
study the phenomenon at the individual commodity level as opposed to market. 
Our findings are instrumental for investors in designing effective portfolios that 
ensure risk diversification and the generation of desirable risk-adjusted returns. 
For instance, tin and zinc would be good diversifiers for portfolios composed 
of oil as opposed to other base or precious metals. Policy makers in countries 
that rely on agriculture may as well benefit from the knowledge generated from 
our findings. With oil being the main transmitter of volatility, policymakers can 
take action to control oil prices during turbulent times to avoid disturbances 
in food prices through mechanisms such as subsidization. Businesses that rely 
on the importation of base metals such as aluminium and copper may find our 
results beneficial to them in managing the risk of abrupt changes in input prices 
caused by oil price shocks. The use of futures contracts for commodities that are 
“net receivers” of volatility from oil could be vital in these situations. Future 
researchers can also use high-frequency data and other methodologies to exam-
ine volatility spillovers between individual commodities and emerging financial 
assets such as Bitcoin to help provide knowledge to investment managers to 
improve their portfolios’ performance.
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Conclusions

In this article, we examine the dynamic volatility spillover between oil and non-
energy commodities, namely agricultural commodities, base metals, and precious 
metals. We study the phenomenon in the timeframe from 2008 to 2022 to cap-
ture time-varying volatility spillovers during the GFC and COVID-19 pandemic. 
Unlike the majority of works that examine a similar phenomenon, we employ high-
frequency daily data for commodities’ spot prices to capture underlying patterns 
that may not be detected in low-frequency data. We further scrutinize the dynamic 
volatility spillover between oil and individual commodities to detect how the phe-
nomenon differs across non-energy commodities in similar markets. We employ 
WCA and DF-DNC to examine the nature and magnitudes of time-varying vola-
tility spillovers between commodities. Our findings provide evidence to prove the 
existence of time-varying volatility spillover between oil and the majority of non-
energy commodities in different markets. However, the significance of coherence 
and volatility spillover between oil and commodities in the same market appears to 
vary, especially in agricultural commodities and base metal markets. Precious met-
als have been shown to have the strongest co-movement with oil during both crises, 
with bi-directional volatility spillovers being evident. A detailed comprehension of 
volatility spillovers between commodities for both financial and overall economic 
well-being.
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