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A B S T R A C T   

The present study examines the impact of uncertainties around climate policy on the stock returns of eight US 
airlines between 2007 and 2023. To examine how climate policies impact daily airline stock volatility through 
the long-run component of total volatility, the monthly climate policy uncertainty index is utilized. Using full- 
sample and out-of-sample estimations, we investigate the problem using the Generalized Autoregressive Con-
ditional Heteroscedasticity-Mixed Data Sampling model. To further assess forecasting accuracy, the Diebold and 
Mariano as well as Superior Predictive Ability methodologies are applied. According to the full-sample esti-
mation results, just two airlines showed a significant relationship with climate policy uncertainty. Meanwhile, six 
airlines including three of the “big four” airlines were significantly affected by the former, according to the out- 
of-sample data. Forecasting results indicate that the climate policy uncertainty-based model outperforms the 
other models in projecting airline returns. The results have significant theoretical and applied ramifications for 
comprehending sectoral asset valuations in the context of uncertain climate policy.   

1. Introduction 

One of the biggest issues facing humanity in the twenty-first century 
is climate change, which is also a major concern for academics, legis-
lators, and environmental activists (Xu et al., 2023). Climate change 
exerts a substantial economic impact on the broader economy, encom-
passing both the aggregate stock market and other sector-specific stocks 
(Lv and Li, 2023). The airline industry has been recognized as the most 
environmentally detrimental form of transportation in terms of green-
house gas (GHG) emissions. Although the industry accounts for only 2% 
of worldwide carbon dioxide (CO2) emissions, its pace of emissions 
growth surpasses that of other transportation sectors such as road, 
railway, and sea (International Energy Agency, 2023; Falk and Hagsten, 
2021). Due to these concerns, the airline industry has come under 
increased scrutiny, with regulators urging a decrease in CO2 emissions 
and a decarbonization of the industry. The operations of the airline in-
dustry may therefore be impacted by growing uncertainties related to 
climate change policies. Climate policies have the potential to cause 
economic and financial disruptions with sector-unique effects (Parous-
sos et al., 2019). They can result in abandoned or stranded assets, a rise 

in the cost of doing business, and financing restrictions for the airline 
sectors. These factors have the potential to affect investors’ sentiments 
towards the airline sector in line with the investor sentiment hypothesis 
(Martins and Cró, 2022). This could change their investing behaviour, 
forcing them to engage in panic selling, which may increase stock 
volatility with ramifications for asset pricing (Chen et al., 2023). Thus, 
the purpose of our article is to address the question of how stock returns 
in the airline sector are impacted by climate policy uncertainty (CPU). 

The existing body of literature has provided evidence of the 
vulnerability of airline stocks to various forms of uncertainty. Prior 
research has investigated the impact of various factors, such as oil price 
shocks, financial crises, health crises (e.g., COVID-19), and acts of 
terrorism (e.g., the September 11 attacks), on the performance of airline 
stocks (Kotcharin et al., 2023; Atems and Yimga, 2021; Martins and Cró, 
2022; Chen et al., 2022; Kang et al., 2021; Mollick and Amin, 2021; 
Carter et al., 2022; Drakos, 2004). This study represents one of the initial 
endeavours to investigate the impact of uncertainty arising from mea-
sures addressing global climate change on the performance of airline 
stocks. A rising body of research has examined how CPU affects stock 
markets (Treepongkaruna et al., 2023; Lv and Li, 2023; Alqaralleh, 
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2023; Hoque et al., 2023). Nonetheless, there is still limited research 
that concentrates on various economic sectors such as energy, trans-
portation, power generation, and medicines (Xu et al., 2023). In light of 
the airline industry’s well-documented role in causing climate change, 
our research fills this knowledge vacuum by concentrating on the stocks 
in this sector and their possible vulnerability to CPU. 

The subsequent sections shall be structured in the following manner: 
An exhaustive literature review is presented in Section 2. Subsequently, 
a detailed account of the data and methodology utilized in this study is 
provided in Section 3. The data obtained is presented in Section 4 of this 
paper, whereas the discussions and implications that emerge from these 
findings are addressed in Section 5. In Section 6, the conclusions that 
have been drawn from the research outcomes are presented. 

2. Review of relevant literature 

2.1. Airline sector and climate policy uncertainty 

Uncertainty regarding climate policy arises via two distinct channels. 
The initial channel regards the potential physical ramifications of 
increasing concentrations of GHG in the atmosphere. The subsequent 
channel concerns the unpredictability surrounding the financial impli-
cations of reducing GHG emissions. The economic vulnerability of 
various sectors to climate change is heightened via both channels, as the 
expenses associated with reducing emissions and fulfilling mitigation 
obligations, such as paying penalties, escalate (IEA, 2007). These factors 
are reflected in the policy decisions of businesses, particularly regarding 
investment matters. 

The airline sector has been put under scrutiny for its role in 
contributing to rising GHG emissions. Emissions from the airline sector 
are considered more detrimental than those from other transportation 
sectors. Moreover, air transport is considered to be the most environ-
mentally hazardous mode of transportation in terms of climate change 
(Falk and Hagsten, 2021). Despite constituting two per cent of the 
worldwide CO2 emissions, the sector’s rate of emissions growth remains 
concerning when compared to other modes of transportation. The 
escalating worldwide need for aviation travel, which consistently con-
tributes to the sector’s GHG emissions, has been identified as the cause 
of this. The situation has been exacerbated by the global deregulation of 
aviation markets and the subsequent emergence of low-cost airlines, 
which has led to an increase in the proportion of holiday air travel 
(Álvarez-Díaz et al., 2019). 

The airline industry faces significant obstacles in its efforts to reduce 
GHG emissions, which exacerbates the situation (Ryley et al., 2020). To 
achieve net-zero emissions by 2050, numerous technical measures 
involving low-emission fuels, airframe and engine improvements, 
operational optimization, and demand restraint solutions are required to 
curtail the rise of emissions (IEA, 2023). Airlines will have to make 
significant capital investments in these, which could have an impact on 
how they operate. Investor behaviour may be influenced and stock 
volatility may increase as a result of regulatory requirements, such as 
those outlined in the Carbon Offsetting and Reduction Scheme for In-
ternational Aviation (CORSIA) that airlines disclose their CO2 emissions 
(International Air Transport Association, 2016). 

2.2. Volatility of airline stocks during uncertain times 

The airline sector is susceptible to a variety of risks and uncertainties 
that impact the operational and investment decisions of businesses, 
including workforce decisions. These encompass geopolitical events 
such as wars and terrorism, energy price fluctuations, financial risks, 
and government regulations. Literature from the past demonstrates how 
the uncertainty generated by these risks affects the volatility of airline 
stocks. For example, Kang et al. (2021) present empirical findings that 
illustrate the substantial impacts that economic policy uncertainty and 
crude price volatility have on airline stocks. Carter et al. (2022) noted 

that airlines with high leverage incurred negative stock returns as a 
result of the economic hardships imitated by travel restrictions imposed 
during the COVID-19 pandemic. Popular Asian airline stocks also 
experienced extremely negative returns after the global financial crisis 
(2007–2009) caused economic turbulence (Goh et al., 2014). Their re-
sults, however, imply that low-cost carriers’ stock returns in the area 
were less vulnerable to the crisis’s negative effects. Drakos (2004) ex-
amines how global airline stocks respond to geopolitical risks, with a 
particular emphasis on the aftermath of the September 11th terrorist 
attacks. The results showed clear evidence of growing idiosyncratic risks 
associated with stock returns following the attacks. Furthermore, at and 
around the start of the Russia-Ukraine conflict, Martins and Cró (2023) 
saw notable negative stock price reactions for airlines worldwide, with 
European airlines displaying enhanced unfavorable impacts. 

Uncertainty has grown as a result of the intensifying discussions 
about climate change on international forums, particularly in industries 
with significant CO2 emissions. Climate change has created issues for 
stock markets, and one of the most important study questions in aca-
demic discourse right now is how CPU affects stock market volatility. 
For example, Xu et al. (2023) demonstrate that rising CPU affects 
short-term stock market volatility in both economies by comparing the 
stock markets in China and the United States. Lv and Li (2023), 
concentrating on US sectoral stock indices, point out that the growing 
CPU intensifies the volatility of the consumer discretionary, energy, 
materials, industrials, health care, and utilities sectors. By lowering in-
vestments in Chinese stock markets, Alqaralleh (2023) offers more proof 
of the substantial effects of CPU on stock markets. The body of scholarly 
work examining the impact of CPU on the volatility of the stock market 
has been steadily expanding. Consequently, it is imperative to do a 
comprehensive assessment of this issue, specifically concerning various 
economic sectors. This is particularly crucial due to the limited avail-
ability of empirical information in this domain (Xu et al., 2023). Because 
of the airline industry’s well-documented role in contributing to climate 
change, as previously noted, we use the innovative CPU index to 
investigate the volatility effects in the airline industry (Ryley et al., 
2020). 

3. Data and methods 

3.1. Data 

This study uses the CPU index to represent the uncertainty associated 
with climate policy, according to Gavriilidis (2021). The index is 
updated every month, and its construction is based on a selection of 
articles from prominent US media outlets that have significant terms 
associated with climate change, such as “global warming”, “greenhouse 
gases”, “climate change” and “EPA”. The heightened level of uncertainty 
surrounding climate policy has been influenced by several factors. These 
include the withdrawal of the United States from the Paris Accord, the 
rejection of the new emission rule by President Trump, and the EPA’s 
publication of new global GHG emissions standards (Fig. 1). It has been 
observed that the CPU outperforms alternative environmental proxies in 
terms of volatility forecasting performance (Liang et al., 2022). 

The real stock returns of eight U.S. airlines are employed (Table 1). 
American Airlines (AAL), Delta Air Lines (DAL), United American Air-
lines (UAL) and Southwest Airlines (LUV) are the “big four” U.S. airlines 
that we initially identified. These account for a minimum of 74% of the 
total airline seats available in the United States. Furthermore, we 
incorporate four more airline companies based in the United States, 
which are Hawaiian Holdings Inc. (HA), Alaska Air Group Inc. (ALK), 
and SkyWest Inc. (SKYW) (Kang et al., 2021). To capture the dynamics 
of volatility in the face of climate policy uncertainty, a blend of airlines 
of various sizes is essential. The sample period was purposefully selected 
to range between June 1, 2007 and August 31, 2023, generating a total 
of 5936 daily observations for stock returns and 195 for CPU index 
(Fig. 2). The returns of all eight airlines exhibit varying degrees of 
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volatility over the observed period, with the presence of volatility 
clustering evident in different time intervals. The starting date created 
was deemed representative of all eight companies to overcome 

variations in time spans of return data. The ending date represents the 
last month for the publication of CPU index data. The data on airline 
returns were obtained from the investing.com website, whereas the CPU 
index data was sourced from the policyuncertainty.com/clima-
te_uncertainty.html page. 

For several reasons, the USA provides a rich context in which to 
investigate how CPU affects airline stock volatility. First off, the nation is 
home to American Airlines Group, Delta Airlines, Inc and United Airlines 
Holdings, the top three airlines in the world in terms of revenue and 
people flown. Because of the scale of their operations, US airlines may 
therefore be more vulnerable to the challenges brought on by rising CPU 
than airlines in other nations. Second, until China overtook the US in 
2019, the US had been the world’s largest market for passenger air travel 
for a considerable amount of time. Therefore, any climate policy aimed 
at lowering CO2 emissions in the aviation industry is probably going to 
have a significant impact on the USA’s aviation industry. Thirdly, the 
aviation industry in the USA is the primary source of GHG emissions into 
the atmosphere, making it the focus of environmental issues pertaining 

Fig. 1. US climate policy uncertainty index. 
Source: https://www.policyuncertainty.com/climate_uncertainty.html. 

Table 1 
List of sampled US airlines and their market capitalization at August 31, 2023.  

No. Company Stock 
market 

Market Cap. (Billion 
USD) 

1. United Airlines Holdings Inc 
(UAL) 

NASDAQ 12.84 

2. American Airlines Group (AAL) NASDAQ 7.69 
3. Delta Air Lines, Inc (DAL) NYSE 22.06 
4. Southwest Airlines Co (LUV) NYSE 15.71 
5. Alaska Air Group, Inc (ALK) NASDAQ 4.28 
6. Hawaiian Holdings, Inc (HA) NASDAQ 0.25 
7. Allegiant Travel Company 

(ALGT) 
NASDAQ 1.34 

8. SkyWest Inc (SKYW) NASDAQ 1.71  

Fig. 2. Trends of US airlines’ stock returns from June 2007 to August 2023.  
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to aviation sector emissions. Ultimately, the CPU index is compiled using 
news from the main media outlets in the USA that cover climate policy 
issues. Thus, it is more appropriate to study the phenomenon in the 
context of the USA than in other countries like China and European 
Union nations. 

3.2. Methods 

3.2.1. Generalized autoregressive conditional heteroskedasticity-mixed 
data sampling (GARCH-MIDAS) 

The GARCH model with mixed data sampling (MIDAS) is employed 
in this study to examine the reciprocal relationship between the CPU 
index and daily airline stock returns (Engle et al., 2013). The 
GARCH-MIDAS methodology allows for the prediction of 
high-frequency financial time series by including low-frequency mac-
roeconomic variables (Chen et al., 2023). In light of the monthly pub-
lication of the CPU index (Gavriilidis, 2021), we examined the 
relationship between daily airline returns and the CPU index. The use of 
high-frequency data, specifically daily data, is imperative in the iden-
tification of significant underlying patterns that may not be immediately 
discernible in data collected on a weekly, monthly, or annual basis 
(Marobhe and Kansheba, 2023). 

We followed the procedures by Yu et al. (2021) to build the 
GARCH-MIDAS model. 

To begin, we assume that the individual airline stock return on day 
“i” in month “t” follows the following process: 

r1,t= μ+ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅τt ×gi,t
√ εi,t,∀l= 1,Nlεut∣Φl− 1,t∼N(0,1) (a)  

Nl = the number of trading days in month “t” and Φl− 1,t = the infor-
mation set up to (i− 1)th day of period t. Equation (a) expresses the 
variance into a short-term component expressed by gi,t and a long-term 
component expressed by τt. Engle et al. (2013) distinguish the short- and 
long-term components of volatility to isolate the influence of other 
variables on daily stock price variations. The short-term component 
accounts for the transient nature of daily fluctuations in stock returns. 
Market sentiments and news pertaining to the company, industry, and 
macroeconomics (Wang et al., 2010) influence the changes in the supply 
and demand dynamics of stocks, which are responsible for the daily 
fluctuations. Low-frequency variables such as realized volatility or 
macro variables can describe the long-term component, which in this 
case is CPU. 

The conditional variance dynamics of the component gi,t i follows a 
daily GARCH (1,1) process as follows; 

gi,t =(1 − α − β)+ α
(
rl− 1,t − μ

)2

Tt
+ βgi− 1,t (b)  

whereas τt is defined as smoothed realized volatility (RV) in the spirit of 
the following MIDAS regression equation; 

τt =m + θn

∑K

k=1
φk(ω1)RVt− k (c)  

RVt =
∑Nt

i=1
r2

i,t (d) 

RVt = monthly smoothed realized volatility (RV) with the fixed-span 
and K = the number of periods over which the realized volatility (RV) is 
smoothed. Then equation (c) is subsequently modified by introducing 
the macroeconomic variable (CPU) alongside RV. This is purposefully 
done to evaluate the effects of these variables on the long-run return 
variance, as follows: 

τ1 = m + θrv

∑k

k=1
φk(ω1)RVt− k + θcpu

∑k

k=1
φk(ω1)CPUt− k (e) 

CPUt− k = the change in monthly CPU index denoted by log difference 
of CPU. We lastly specify the total conditional variance as follows: 

σ2
it = τ1. gi1,t (f) 

The weighting scheme employed in equation (c) and equation (d) is 
described by beta lag polynomial as follows: 

φi(ω1)=

(
k/K

)ω1 − 1

∑K

j=1

(
j/K

)ω1 − 1
(g)  

n.b. the weights in Equation (e) sum up to 1. 
Equations (a), (b), (c), and (d) construct the GARCH-MIDAS model 

with CPU effects. In contrast, Equations (a), (b), (c), and (e) build the 
GARCH-MIDAS model with RV effects. The two models illustrate vola-
tility predictions utilizing long-term components, such as monthly data 
on daily airline companies’ returns. The GARCH (1,1) model, which 
reflects the short component of volatility returns (Bollerslev, 1986), is 
used to compare these models. The following is the GARCH (1,1) model 
specification: 

rt = μ + εt (h) 

Variance equation; 

σ2
t = α0 +

∑q

i=1
αi ε2

t-1 +
∑p

j=1
βj α2

t-j (i)  

σt
2 = Conditional variance; μ = Average return and εt = residual returns. 

3.2.2. Forecasting performance 
We investigated how well the three models listed above predicted the 

volatility of the stocks of airline firms using a variety of metrics. 
Following Asgharian et al. (2013), a total of four loss functions were 
used: mean absolute error (MAE), root mean absolute error (RMAE), 
mean square error (MSE), and root mean square error (RMSE). They are 
shown in the following order: 

MAE=
1
T
∑T

i=1

( ⃒
⃒σ2

i − δ2
i

⃒
⃒
)

(j)  

MSE =
1
T
∑T

i=1

(
σ2

i − δ2
i

)2 (k)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

i=1
(σ2

i − δ2
i )

2

√
√
√
√ (l)  

RMAE=√

(
1
T
∑T

i=1

( ⃒
⃒σ2

i − δ2
i

⃒
⃒
)
)

(m)  

T = the number of total observations; Ti = the first observation in out-of- 
sample. σ2

i and δ2
i = the actual and predicted conditional variance at 

time t respectively. 
The GARCH model that exhibits the lowest Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error 
(MAE) scores out of many GARCH models is regarded as the most 
effective in predicting volatility. To evaluate the predictive performance 
of two separate models, the Diebold and Mariano (DM) test, as intro-
duced by Diebold and Mariano (1995), is also used. The loss differential 
used in the DM test, denoted as the discrepancy between the squared 
prediction errors, may be expressed in the following manner: 

DM =
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

⋅var (d)
√ ∼N(0,1)

dt = e2
0,t − e2

1,t

(n) 
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whereby; 
e0,t = the benchmark model’s prediction error; e1,t = the completed 

model’s prediction error; T = the total number of forecasts; d = the time 
series’ mean for dt; and var(d) = the time series variance for dt. 

Furthermore, we use a combination of the GARCH model, the 
GARCH-MIDAS-RV model, and the GARCH-MIDAS-RV + CPU model in 
our analysis. To evaluate the predictive performance of these models, we 
adopt the Superior Predictive Ability test as proposed by Yu et al. 
(2021). The Superior Predictive Ability (SPA) test, first proposed by 
Hansen (2005), provides a means to assess the relative performance of a 
given forecasting methodology compared to other prediction tech-
niques. This is shown as follows; 

dk,t =L
(
δ0,t
)
− L
(
δk,t
)
, k= 1,…,m (o)  

whereby; 
dk,t = the performance of model k in relation to the benchmark at 

time t. dt , dt = (d1,t, …. dm,t)’ = the vector of the relative performances. 
We utilize the standardized test statistic for SPA (Hansen, 2005) as 
follows: 

TSPA
n =max

[

max
k− 1,…,m

n1/2dk

ω̂k
, 0
]

(p) 

Subsequently, a stationary bootstrap implementation of the SPA test 
is utilized: 
{

d*
b,t

}
=
{

dTk,1

}
, b= 1,…B (q)  

d*
b,t = the pseudo time series for the resamples of dt B = the number of 

bootstrap resamples; {τb,1 … … … … τb,n} is constructed by combining 
blocks of {1, …, n} with random lengths. This is shown as follows: 

ω̂k,B*2 =B− 1
∑B

b=1

(
n1/2d*

k,b − n1/2dk

)2
, k= 1,…,m (r)  

d*
k,B = n− 1 ∑B

b=1 dk,b,t , which by the law of large numbers, the estimator is 
consistent for the true variance, ω2

k . 

Z*
k,b,t=d*

k,b,t − g(dk),b=1,…,B; t=1,…,ng(dk)=dk⋅1

{

x≥
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ω2
k/n)2 log log n

√ }

(s)  

whereby 1{.} represents the indicator function. Based on the assump-
tions of the preceding test above, we calculated the TSPA*

b,n and the 
bootstrap p score as follows: 

TSPA⋅*
b,n =max

[

0, max
k− 1,…,m

n1/2Z*
k,b

ω̂k

]

(t)  

Zk,b = n− 1
∑n

t− 1
Z*

k,b,t , k = 1,…,m (u)  

P̂SPA =
∑B

b=1

1
{

TSPA*
b,n > TSPA

b,n

}

B
(v)  

4. Empirical results 

4.1. Descriptive statistics 

At the outset, the basic descriptive statistics on the returns of the 
airline companies that were sampled and the CPU index were computed 
(Table 2). Positive mean returns of 3–8 percent were observed for the 
eight airline securities. The patterns of the standard deviations for the 
returns were largely comparable. The observed results may be 

effectively highlighted by the substantial degree of correlations among 
the sampled airline returns (Table 3). The CPU index and return data 
exhibited a positive skewness, except for LUV exclusively. Furthermore, 
all of the returns and CPU index exhibited positive kurtosis values 
exceeding 3.0, indicating that their distributions were leptokurtic in 
nature (Marobhe and Kansheba, 2023). 

Subsequently, we tested the statistical properties of airline returns 
and CPU index data (Table 4). The Augmented Dickey-Fuller (ADF) and 
Phillips-Perron (P-P) unit root tests were conducted to test for statio-
narity of the none time series (Yu et al., 2021). The results showed no 
evidence of unit root in the returns data of all airline companies, except 
for the CPU index. We then conducted the first differencing of the CPU 
index and re-performed the two-unit root tests, with the results indi-
cating stationary behaviour. Concerning normality, the Jarque-Bera 
(J-B) test results revealed the fact that the residuals for the nine vari-
ables were not normally distributed (Marobhe and Kansheba, 2023). 
Moreover, the ARCH test statistics for airline returns and CPU index 
were greater than 100 with critical values less than 0.05, which is evi-
dence of heteroskedastic traits (Engle, 1982). Lastly, we carried out a 
Portmanteau white noise test for serial correlation for each of the nine 
time series data incorporated in the study. The results present evidence 
of serial correlation “white noise” in all the time series, a phenomenon 
that is prevalent in this kind of data, i.e., stock returns. 

4.2. GARCH-MIDAS estimation results 

Our findings encompass the estimation of the GARCH-MIDAS-RV 
and GARCH-MIDAS-RV + CPU models in addition to the conventional 
GARCH (1,1) model. Still, one big problem with the GARCH-MIDAS 
model is that it doesn’t take structural breaks into account. This is 
something that has been called a “stylized fact” when it comes to the 
price changes of commodities and financial assets (Pan et al., 2017). 
According to Malik (2022), emerging evidence indicates that neglecting 
structural disruptions in volatility within the returns of financial assets 
may lead to an overestimation of volatility. To keep the effects of 
structural breaks in model estimation to a minimum, we use the Regime 
Switching GARCH-MIDAS. This means splitting the study period into 
sub-periods and looking at how stock volatility changes in different time 
regimes (Yu et al., 2021; Pan et al., 2017). 

We conducted two distinct varieties of analytics in this instance: full- 
sample and out-of-sample analysis. The full-sample comprises estima-
tions spanning from June 2007 to August 2023. Nevertheless, structural 
breaks in airline stock prices may have occurred during this time period 
due to the global financial crisis of 2008 and the COVID-19 pandemic of 
2020. Additionally, we conducted an out-of-sample analysis encom-
passing the sub-period from July 2015 to August 2023 in order to first 
circumvent any potential structural breakdowns caused by the global 
financial crisis. Furthermore, the CPU index reached unprecedented 
levels during the carefully chosen sub-period due to significant climate 
policy events, providing an additional rationale for using out-of-sample 
estimation. The US pulling out of the Paris Agreement, Volkswagen 
admitting to manipulating CO2 emissions from its cars, and President 
Donald Trump’s controversial statements regarding climate change is-
sues (Fig. 1). To find possible structural breakdowns in the out-of-sample 
estimates during the pandemic (from 2020 to 2022), picking an extra 
sub-period would not have been possible because it would have pro-
duced too few observations for the monthly CPU index, making the re-
sults less reliable. 

The full-sample and out-of-sample GARCH-MIDAS estimations for 
the effects of CPU on airline stock returns are displayed in Tables 5 and 
6, respectively. The tables are subdivided into three main subsections, 
the first showing the GARCH (1,1) estimation results, the second rep-
resenting the GARCH-MIDAS-RV results, and the third involving the 
GARCH-MIDAS-RV + CPU. Commencing with full-sample results, the 
GARCH (1,1) parameters, namely, k, α, β and μ were significant for all 
eight airlines, which is evidence of the fact that the GARCH (1,1) model 
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fits the daily returns data extremely well. The results are, however, 
different for GARCH-MIDAS models, which do not fit well with the 
majority of airline returns. Of utmost importance are the values for the 
parameter θcpu, which measures the effects of climate policy uncertainty 
on the long-term component of the airline stock returns’ total volatility. 
From Table 5, it can be observed that the coefficients of the θcpu for 
ALGT and HA, which were − 0.004 and − 0.003, respectively, were sta-
tistically significant at the 0.05 level. The θcpu coefficients for the six 
remaining airline stocks were not significant at either level of signifi-
cance. The full-sample results demonstrate that CPU does not play a vital 
role in influencing airline stock returns. Moreover, neither of the “big 
four” airline stocks seem to be affected by CPU. 

As previously stated, we conducted an out-of-sample analysis for 
robustness purposes by studying the phenomenon during periods of 
escalating climate policy uncertainty (Table 6). The out-of-sample 

results for the period from 2015 to 2023 show that the CPU has an 
empirically significant effect on the majority of airline stocks. The θcpu 
coefficients for six airlines, which include three of the “big four,” i.e., 
AAL, UAL, and DAL, out of all the airlines, only ALGT and LUV were not 
affected by CPU because their θcpu coefficients were statistically 
insignificant. 

4.3. Model fitness 

We then utilize the Akaike information criterion (AIC), the Bayesian 
information criterion (BIC), the Shwartz information criteria (SIC), the 
Hannah-Quinn information criteria (HQIC), and the optimal log- 
likelihood function (Log-L) to test the fitness of each of the three 
models. The goal is to evaluate whether incorporating CPU into the 
GARCH-MIDAS model can help make it best fitted. The model with the 
lowest scores for AIC, BIC, SIC, and HQIC among the three models for 
each airline is considered to be best fitted; on the contrary, the model 
with the highest Log-L score is better fitted to model the returns (Mar-
obhe and Dickson, 2022). The analysis of model fitness is done for 
GARCH-MIDAS models based on both full-sample and out-of-sample 
data. The results for full-sample estimations indicate that the GARCH 
(1,1) was better fitted to model airline returns for AAL, LUV, and SKYW 
stocks (Table 7). On the other hand, the returns for two airline stocks, 
namely, DAL and ALK, were better fitted using the GARCH-MIDAS-RV 
model. Of much interest to the study is the GARCH-MIDAS-RV + CPU 
model, and the model fitness results indicate that this particular model 
fits well with returns for ALGT, HA, and UAL. 

We proceeded to do similar model fitness analytics based on out-of- 
sample estimation results. The results indicate that GARCH (1,1) fits 
well with the returns for ALGT alone, while GARCH-MIDAS-RV was 
observed to better fit those of LUV. More importantly, the robustness of 
GARCH-MIDAS-RV + CPU for measuring the impact of CPU on airline 
returns was improved by using out-of-sample estimations. The returns 
for the six remaining airlines, namely, DAL, UAL, AAL, ALK, HA, and 
SKYW, seemed to be significantly affected by the inclusion of the CPU 
component in the GARCH-MIDAS model. These results indicate that the 
out-of-sample GARCH-MIDAS estimations were more efficient in 
studying the effects of policy uncertainty relating to climate change. 

Table 2 
Descriptive statistics.  

Returns Obs Mean Std. Dev Min Max Skew Kurtosis 

ALGT 5936 6.840 2.7045 − 28.33 33.72 0.739 18.049 
ALK 5936 8.800 2.6772 − 23.24 31.28 0.677 17.783 
DAL 5936 5.020 3.0189 − 25.99 26.55 0.257 12.636 
HA 5936 6.320 3.2263 − 26.97 50.83 0.91 20.66 
LUV 5936 3.830 2.0833 − 18.45 17.06 − 0.166 9.294 
SKYW 5936 7.090 3.0161 − 44.81 43.66 0.224 25.06 
UAL 5936 7.560 3.8384 − 36.77 68.54 1.193 32.348 
AAL 5936 3.390 3.9409 − 30.3595 58.7361 1.128 20.412 
CPU 195 139.889 67.427 38.092 411.289 1.105 4.014 

Note: This table shows descriptive statistics of CPU index and stock return series for the airline companies. 

Table 3 
Pairwise correlations.   

ALGT ALK DAL HA LUV SKYW UAL 

ALGT 1.000       
ALK 0.5837** 1.000      
DAL 0.5596** 0.7310** 1.000     
HA 0.4932** 0.5810** 0.5558** 1.000    
LUV 0.5517** 0.6810** 0.7024** 0.5736** 1.000   
SKYW 0.5366** 0.6343** 0.6070** 0.5381** 0.5794** 1.000  
UAL 0.5352** 0.7176** 0.8260** 0.5216** 0.6484** 0.5981** 1.000 
AAL 0.5171** 0.7034** 0.7830** 0.5361** 0.6362** 0.5699** 0.8086** 

Note: ***, ** and * denote significance at 0.01, 0.05, and 0.1 level, respectively. 

Table 4 
Statistical properties of variables.   

ADF PP J-B ARCH W. Noise 

ALGT − 60.41** − 4470** 0.884** 339.02** 486.59** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

ALK − 58.805** − 4284** 0.880** 870.88** 564.93** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

DAL − 57.68** − 4110** 0.887** 634.94** 707.70** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

HA − 57.29** − 4238** 0.900** 844.26** 597.88** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

LUV − 59.59** − 4470** 0.936** 1233.53** 488.52** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

SKYW − 58.60** − 4338** 0.880** 1326.61** 630.62** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

UAL − 56.27** − 4043** 0.830** 124.77** 785.50** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

AAL − 56.23** − 4088** 0.873** 312.13** 796.37 
(0.000) (0.000) (0.000) (0.000) (0.000) 

ΔCPU − 5.62** − 49.5** 0.912 12.01** 1492.30 
(0.001) (0.001) (0.000)** (0.000) (0.000) 

Note: The table shows the statistical properties of the ΔCPU index and the eight 
US airline companies stock return data. The numbers in parentheses are the p- 
values of the tests. ***, **, and * denote significance at the 0.01, 0.05, and 0.1 
levels, respectively. 
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4.4. Results robustness checks 

A range of loss functions were utilized to evaluate the CPU’s preci-
sion in predicting the volatility of airline stock returns. Analogous to 
previous analyses, the accuracy of forecasts for the previously 
mentioned variable is evaluated using both full-sample and out-of- 
sample estimates (Table 8). To achieve this objective, we employed 
four distinct loss functions: RMSE, MAE, MSE, and RMAE, as detailed in 
the methodology section. The comparison of four loss function outcomes 
for the GARCH-MIDAS-RV + CPU, arranged from lowest to highest 
scores, is of specific interest. Commencing with the estimations of the 
full sample, the outcomes for all four functions are inconsistent. As an 
illustration, the MSE suggests that GARCH-MIDAS-RV + CPU offers 
more precise predictions regarding the returns of airline stocks, specif-
ically for AAL, ALGT, and HA. In contrast, the CPU variable is demon-
strated to forecast the returns of DAL, LUV, ALGT, HA, and SKYW with 
greater accuracy, as indicated by MAE. Conversely, RMSE suggests that 
CPU forecasts returns for AAL, ALGT, and HA with greater precision, 
whereas RMAE indicates that CPU forecasts returns for DAL, LUV, ALGT, 
HA, and SKYW with a certain degree of accuracy. The discrepancies that 
arise from applying loss functions to out-of-sample estimation results are 
similarly evident. The MSE results indicate that CPU predicts volatility 
returns for AAL, ALK, and SKYW with greater accuracy, whereas the 
MAE indicates that CPU provides an accurate return forecast for DAL, 
UAL, AAL, KA, and SKYW. Conversely, RMSE indicates that CPU exhibits 
superior return prediction capabilities for AAL, ALK, HA, and SKYW, 
whereas RMAE proposes that the variable provides more precise return 

forecasts for DAL, UAL, AAL, and SKYW. 
As a result of the incongruities produced by the four loss functions 

pertaining to the accuracy of forecasting, we undertook the Diebold and 
Mariano (DM) test in order to exhaustively compare the predictive ac-
curacy for each model. In the context of loss function utilization, the DM 
test is a more suitable approach for mitigating such inconsistencies (Yu 
et al., 2021). As benchmark models, the GARCH (1,1) and 
GARCH-MIDAS-RV models are utilized to produce the pertinent test 
statistics. The statistical analysis commenced with full-sample estima-
tions. The findings revealed that at the 0.05 level, the values for two 
airlines, ALGT and HA, demonstrate positive trends (Table 9). Conse-
quently, the lowest forecast error is produced when CPU is incorporated 
into the GARCH-MIDAS model for both ALGT and HA. On the other 
hand, Table 10’s out-of-sample results offer an alternative viewpoint on 
the CPU’s capacity to predict airline return volatility. Based on the two 
benchmark models, GARCH (1,1) and GARCH-MIDAS-RV, the DM test 
results show that the six airlines—AAL, UAL, DAL, HA, SKYW, and 
HA—have the lowest CPU forecast errors when it comes to projecting 
returns. These findings further demonstrate the robustness of employing 
out-of-sample data for CPU-based volatility predictions. 

Next, we assess the three models’ predictive performance of the eight 
airline returns using the Superior Predictive Ability (SPA) test based on 
full-sample estimates. As benchmark models, we employ the GARCH 
(1,1), GARCH-MIDAS-RV, and GARCH-MIDAS-RV + CPU in that order. 
When compared to other models using the relative loss function, the 
benchmark model has a lower level of forecast inaccuracy because the 
SPA test statistic is negative (Hansen, 2005). The benchmark model is 

Table 5 
Full-sample estimates of the three models for eight airline stock returns.  

Model DAL LUV UAL AAL ALGT ALK HA SKYW 

GARCH (1,1) Est. Est. Est. Est. Est. Est. Est. Est. 
k 0.096* 0.099* 0.088* 0.059 0.101* 0.118* 0.067* 0.112*  

(0.000) (0.000) (0.001) (0.074) (0.000) (0.000) (0.014) (0.000) 
α 0.085* 0.244* 0.108* 0.078* 0.205* 0.138* 0.535* 0.376*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
β 0.907* 0.663* 0.886* 0.915* 0.743* 0.835* 0.162* 0.504*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
μ 0.076* 0.428 0.127* 0.109* 0.453* 0.189* 3.484* 1.327*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
GARCH MIDAS-RV 
μ 0.133** 0.110* 0.146* 0.083 0.131* 0.168* 0.176* 0.157*  

(0.005) (0.000) (0.018) (0.125) (0.001) (0.000) (0.021) (0.007) 
α 0.083** 0.240* 0.156* 0.062 0.309 0.152* 0.955* 0.372  

(0.011) (0.003) (0.001) (0.263) (0.059) (0.003) (0.000) (0.059) 
β 1.635* 0.852* 1.712* 1.519* 0.743* 1.450* 0.319* 0.983*  

(0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000) (0.003) 
θrv 0.089* 0.134 0.053 0.058 0.078* 0.138* 0.179* 0.271  

(0.000) (0.061) (0.148) (0.073) (0.021) (0.001) (0.035) (0.601) 
w 3.764 1.273 6.629 3.066 1.580* 1.720 3.349* 2.656  

(0.119) (0.093) (0.058) (0.425) (0.033) (0.472) (0.001) (0.173) 
m 3.980* 1.800* 5.573* 4.345* 1.665* 2.776* 3.546* 3.629*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.028) (0.000) (0.000) 
GARCH MIDAS-RV þ CPU 
μ 0.075* 0.086* 0.076* 0.051 0.106* 0.098* 0.091* 0.096*  

(0.008) (0.001) (0.021) (0.160) (0.002) (0.000) (0.034) (0.014) 
α 0.047* 0.189* 0.081* 0.038 0.251* 0.088* 0.492* 0.227  

(0.015) (0.010) (0.001) (0.338) (0.078) (0.005) (0.000) (0.114) 
β 0.919* 0.671* 0.892* 0.937* 0.604* 0.843* 0.164* 0.599*  

(0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000) (0.006) 
θrv 0.050* 0.106* 0.028 0.036* 0.063 0.080* 0.092 0.165*  

(0.000) (0.004) (0.058) (0.001) (0.160) (0.001) (0.149) (0.003) 
θcpu − 0.002 0.001 − 0.004 − 0.002 − 0.004** 0.001 − 0.003** 0.001  

(0.466) (0.422) (0.087) (0.473) (0.013) (0.796) (0.000) (0.471) 
w 2.115 1.002 3.453 1.893 1.284* 1.000 1.726* 1.620  

(0.170) (0.292) (0.070) (0.545) (0.044) (0.842) (0.002) (0.332) 
m 2.236* 1.417* 2.902* 2.682* 1.354* 1.614* 1.828* 2.213*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.050) (0.000) (0.000) 

Note: Table 5 presents the parameter estimates of our three models based on the full-sample data for the eight airline companies. The parameter space for GARCH (1,1) 
model is Θ = {k, α, β, μ}. The parameter space for the GARCH-MIDAS-RV model is Θ = {μ, α, β, θrv, w, m}. And the parameter space for the GARCH-MIDAS-RV + CPU 
model is Θ = {μ, α, β, θrv, θcpu, w, m}. *, **, *** denotes significance at 0.01, 0.05 and 0.10 respectively. 

M.I. Marobhe and J.M. Kansheba                                                                                                                                                                                                           



Journal of Air Transport Management 115 (2024) 102536

8

not worse than any of the alternative models, according to the null hy-
pothesis of the SPA test. Similarly, based on the full-sample estimations, 
the findings for just two airlines, HA and ALGT, demonstrate that the 
GARCH-MIDAS-RV + CPU model outperforms other models in volatility 
predictions. This is because, using the GARCH-MIDAS-RV + CPU as the 
benchmark model, the SPA test statistics for all four loss functions are 
negative and not significant. Consistent with the DM test results, the SPA 
test outcomes for the out-of-sample estimations utilizing the identical 
criteria revealed that CPU provides the most accurate return forecasts 
for the six airlines (AAL, UAL, DAL, HA, SKYW, and HA). 

5. Discussion and implications 

5.1. Discussion 

The current research has investigated the potential influence of 
increasing uncertainties arising from climate policies aimed at reducing 
GHG emissions on the stock returns of the airline industry. The empirical 
findings from our out-of-sample analysis demonstrate that CPU exerts a 
statistically significant influence on the stock returns of six US airlines. 
The findings of this study align with those of Xu et al. (2023), as they 
give evidence indicating substantial impacts of CPU on stock returns of 
sectors with high GHG emissions, including energy, medicines, and 
utilities. Furthermore, the results of our study support the substantial 
impact of increasing uncertainty surrounding climate change matters on 
global stock markets (Treepongkaruna et al., 2023; Lv and Li, 2023; 
Alqaralleh, 2023; Hoque et al., 2023). 

The paper offers more proof of the CPU index’s greater predictive 
power over other climate change proxies for asset return volatility, 
particularly in economies with large GHG emissions like China and the 
United States (Liang et al., 2022). The body of research has shown that 
several risks, including those related to geopolitics (e.g., wars and 
terrorism), pandemics (e.g., COVID-19), oil price fluctuations, and 
financial crises, can significantly affect airline returns (Kotcharin et al., 
2023; Atems and Yimga, 2021; Martins and Cró, 2022; Chen et al., 2022; 
Kang et al., 2021; Mollick and Amin, 2021; Carter et al., 2022; Goh et al., 
2014; Drakos, 2004). Our research highlights the significant risk that 
climate change policies may pose challenges to the airline industry, 
given the increasing pressure from around the world on industries such 
as aviation to decarbonize and achieve zero emissions by 2050. 

Our findings demonstrate that growing CPU can affect the returns of 
comparatively smaller airlines like Hawaiian Airlines, Alaska Air, and 
Skywest, as well as larger ones like American Airlines, Delta Airlines, 
and United Airlines. These findings differ slightly from earlier research 
on different kinds of risks affecting airline stocks. Goh et al. (2014), for 
example, demonstrated that the impact of the global financial crisis on 
Asian airlines’ stock returns differed significantly for both larger and 
smaller low-cost carriers. The latter demonstrated resilience in the face 
of economic hardship during the crisis, even as the large airline stocks 
experienced significant negative effects. Furthermore, the results 
contradict those of Martins and Cró (2022), whose findings show that 
COVID-19 has varied effects on airlines that have different characteris-
tics, such as size, ownership concentration, and leverage. We build a 
case that can imply that, notwithstanding the size and heterogeneity of 

Table 6 
Out of sample estimates of the three models for eight airline stock returns.  

Model DAL LUV UAL AAL ALGT ALK HA SKYW 

GARCH (1,1) Est. Est. Est. Est. Est. Est. Est. Est. 
k 0.069* 0.057* 0.014 − 0.015 0.065* 0.023 0.061 0.171*  

(0.014) (0.025) (0.644) (0.667) (0.037) (0.415) (0.121) (0.000) 
α 0.434* 0.403* 0.427* 0.410* 0.414* 0.457* 0.484* 0.574*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
β 0.900* 1.190* 1.012* 0.979* − 0.397* 1.100* 0.942* 0.822*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
μ 0.040* 0.010* 0.038* 0.058* 2.736* 0.044* 0.092* 0.290*  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
GARCH MIDAS-RV 
μ 0.111* 0.080* 0.091 0.005 0.084 0.048 − 0.008 0.094*  

(0.073) (0.046) (0.143) (0.260) (0.300) (0.137) (0.763) (0.038) 
α 0.156 0.380* 0.120* 0.089* 0.331 0.158 0.699* 0.278  

(0.174) (0.001) (0.021) (0.043) (0.217) (0.095) (0.000) (0.001) 
β 1.432* 0.463* 1.351* 1.188* 0.975* 0.950* 0.139* 0.824*  

(0.000) (0.003) (0.000) (0.000) (0.035) (0.000) (0.036) (0.000) 
θrv 0.113* 0.277* 0.044 0.039* 0.260* 0.087* 0.137 0.200*  

(0.014) (0.002) (0.127) (0.039) (0.042) (0.015) (0.237) (0.000) 
w 1.720 2.945 1.530 1.404 2.321* 1.240* 2.417* 2.553*  

(0.145) (0.161) (0.142) (0.056) (0.056) (0.020) (0.000) (0.003) 
m 0.302 1.222* 0.806 0.757 1.935 0.504 0.455 0.326  

(0.688) (0.016) (0.410) (0.123) (0.095) (0.150) (0.227) (0.183) 
GARCH MIDAS-RV þ CPU 
μ 0.064 0.064 0.059 0.004 0.049 0.038 − 0.005 0.071  

(0.082) (0.103) (0.175) (0.929) (0.337) (0.305) (0.931) (0.136) 
α 0.091 0.307* 0.078* 0.068 0.192 0.127 0.457* 0.211*  

(0.196) (0.001) (0.025) (0.153) (0.243) (0.211) (0.000) (0.002) 
β 0.833* 0.373* 0.883* 0.900* 0.567* 0.766* 0.091* 0.624*  

(0.000) (0.006) (0.000) (0.000) (0.039) (0.000) (0.044) (0.000) 
θrv 0.066* 0.224* 0.029 0.030 0.151* 0.070* 0.089 0.152*  

(0.016) (0.004) (0.155) (0.140) (0.048) (0.033) (0.290) (0.001) 
θcpu − 0.007* 0.003 − 0.007* − 0.008* − 0.005 − 0.006* − 0.011* − 0.017*  

(0.018) (0.175) (0.049) (0.048) (0.207) (0.003) (0.000) (0.000) 
w 1.000 2.375 1.000 1.064 1.349 1.000* 1.580* 1.934*  

(0.163) (0.359) (0.173) (0.200) (0.063) (0.044) (0.000) (0.011) 
m 0.176 0.986* 0.527 0.574 1.125 0.406 0.297 0.247  

(0.773) (0.036) (0.500) (0.438) (0.107) (0.334) (0.276) (0.653) 

Note: Table 9 presents the parameter estimates of our three models based on the out of sample data for the eight airline companies. The parameter space for GARCH 
(1,1) model is Θ = {k, α, β, μ}. The parameter space for the GARCH-MIDAS-RV model is Θ = {μ, α, β, θrv, w, m}. And the parameter space for the GARCH-MIDAS-RV +
CPU model is Θ = {μ, α, β, θrv, θcpu, w, m}. *, **, *** denotes significance at 0.01, 0.05 and 0.10 respectively. 
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Table 7 
Model fitness assessment criteria results based on the full-sample.  

Models DAL LUV UAL AAL ALGT ALK HA SKYW 

Full-sample estimations 
GARCH (1,1) AIC 8.193 5.914 11.234 8.321 6.023 9.103 8.321 4.219 
BIC 8.306 6.015 10.023 8.103 6.234 9.328 8.602 4.376 
SIC 8.237 5.817 11.324 8.563 6.723 9.023 8.532 4.283 
HQIC 8.503 5.724 11.482 8.921 6.692 9.692 8.723 4.712 
Log-L 764.612 534.926 956.324 753.303 632.321 832.823 775.321 389.823 
GARCH MIDAS-RV AIC 7.813 6.382 5.189 9.236 8.328 7.272 9.282 7.950 
BIC 7.718 6.493 5.382 9.548 8.162 7.396 9.329 8.229 
SIC 7.672 6.724 5.268 9.471 8.523 7.149 9.438 8.874 
HQIC 7.291 6.325 5.796 9.683 8.621 7.039 9.193 8.833 
Log-L 863.972 674.175 479.482 860.606 748.281 658.034 812.823 834.664 
GARCH MIDAS-RV + CPU AIC 11.672 10.232 4.236 13.818 3.091 10.984 5.283 6.562 
BIC 11.248 9.964 4.994 12.328 3.382 11.355 5.492 6.674 
SIC 10.981 10.537 4.505 13.929 3.723 11.262 5.281 6.451 
HQIC 11.07 10.974 4.902 14.123 3.682 11.514 5.732 6.353 
Log-L 568.732 926.521 336.166 1176.279 678.890 1023.424 840.281 593.836 
Out-of-sample estimations 
GARCH (1,1) AIC 11.223 7.567 14.380 9.236 7.709 6.645 7.496 6.413 
BIC 11.374 7.697 12.829 8.994 7.980 6.809 7.750 6.652 
SIC 11.278 7.439 14.495 9.505 8.605 6.586 7.686 6.510 
HQIC 11.646 7.325 14.697 9.902 8.566 7.074 7.859 7.162 
Log-L 1047.858 684.783 1224.095 836.166 809.371 607.900 698.487 592.531 
GARCH MIDAS-RV AIC 10.702 6.169 6.642 10.252 10.660 5.308 8.362 12.085 
BIC 10.565 6.310 6.890 10.599 10.447 5.399 8.405 12.508 
SIC 10.511 6.613 6.743 10.512 10.909 5.218 8.503 13.489 
HQIC 9.989 6.095 7.419 10.748 11.035 5.138 8.282 13.427 
Log-L 1182.598 463.131 613.737 955.273 957.800 480.317 732.273 1268.689 
GARCH MIDAS-RV + CPU AIC 9.119 10.235 6.077 8.582 11.128 3.051 4.127 5.912 
BIC 8.782 9.967 5.917 7.657 12.175 3.154 4.291 6.013 
SIC 8.580 10.532 6.253 8.651 13.403 3.128 4.126 5.812 
HQIC 8.649 10.973 6.515 8.772 13.255 3.198 4.478 5.723 
Log-L 444.516 926.563 550.109 730.608 2444.004 284.284 656.470 534.987 

Table 7 presents the results for the three models. A total of five model fitness assessment criteria are utilized, namely Log-L, AIC, BIC, SIC, and HQIC. The lower the 
values of AIC, BIC, SIC, and HQIC, the better the model is fitted, and the higher the Log-L, the better the model is fitted. 

Table 8 
Loss functions results for volatility forecasting accuracy.    

Full-Sample Estimations Out-Of-Sample Estimations  

Model MSE MAE RMSE RMAE MSE MAE RMSE RMAE 

DAL GARCH (1,1) 2.724 0.623 1.650 0.789 3.296 0.854 1.815 0.924 
GARCH-MIDAS-RV 1.965 0.532 1.402 0.879 4.763 1.058 2.182 1.028 
GARCH-MIDAS-RV + CPU 2.872c 0.772e 1.695c 0.729f# 3.475c 0.729e# 1.864c 0.854e# 

LUV GARCH (1,1) 5.550 0.633 2.356 0.796 10.031 0.299 3.167 0.546 
GARCH-MIDAS-RV 6.627 0.881 2.574 0.939 7.020 0.593 2.650 0.770 
GARCH-MIDAS-RV + CPU 7.190f 0.311c# 2.681f 0.558c# 10.463g 1.145f 3.235g 1.070f 

UAL GARCH (1,1) 8.290 0.218 2.879 0.467 6.715 0.867 2.591 0.931 
GARCH-MIDAS-RV 5.802 0.433 2.409 0.658 8.018 1.207 2.832 1.099 
GARCH-MIDAS-RV + CPU 8.647g 0.836f 2.941g 0.914g 8.700f 0.426c# 2.950f 0.653c# 

AAL GARCH (1,1) 2.962 0.460 1.721 0.679 3.584 0.631 1.893 0.794 
GARCH-MIDAS-RV 2.137 0.370 1.462 0.608 2.585 0.506 1.608 0.712 
GARCH-MIDAS-RV + CPU 2.123b# 0.393d 1.457b# 0.627e 2.569b# 0.429d# 1.603b# 0.655d# 

ALGT GARCH (1,1) 6.036 0.688 2.457 0.830 10.909 1.092 3.303 1.045 
GARCH-MIDAS-RV 7.207 0.338 2.685 0.979 7.635 0.645 2.763 0.803 
GARCH-MIDAS-RV + CPU 5.542d# 0.958h 2.354d# 0.582d# 11.380h 1.245g 3.373h 1.116g 

ALK GARCH (1,1) 9.016 0.797 3.003 0.893 7.304 0.943 2.703 0.971 
GARCH-MIDAS-RV 6.310 0.471 2.512 0.686 8.721 1.313 2.953 1.146 
GARCH-MIDAS-RV + CPU 9.405h 0.909g 3.067h 0.953h 6.706e# 1.432h 2.590e# 1.197h 

HA GARCH (1,1) 2.445 0.380 1.564 0.616 2.959 0.521 1.720 0.722 
GARCH-MIDAS-RV 1.764 0.305 1.328 0.552 2.134 0.418 1.461 0.646 
GARCH-MIDAS-RV + CPU 1.753a# 0.198a# 1.324a# 0.445a# 2.121a 0.271a# 1.456a# 0.521a# 

SKYW GARCH (1,1) 4.983 0.875 2.232 0.935 6.029 1.199 2.455 1.095 
GARCH-MIDAS-RV 5.950 0.791 2.439 0.889 7.199 1.084 2.683 1.041 
GARCH-MIDAS-RV + CPU 6.455e 0.279b# 2.541e 0.528b# 5.923d# 0.383b# 2.434d# 0.618b# 

Note: The table shows the full-sample and out-of-sample forecast validation for volatility of the three models * and # indicate that the GARCH-MIDAS-RV + CPU model 
performs better than the GARCH and GARCH-MIDAS-RV models, respectively. a, b, c, d, e, f, g, h, and i indicate sorting each loss function in order from smallest to 
largest for the GARCH-MIDAS-RV + CPU model of the eight airlines. 
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individual airlines, investor sentiments in the aviation sector are influ-
enced by climate policy concerns. 

5.2. Theoretical implications 

Our results have theoretical implications by demonstrating the sig-
nificant negative impact of CPU on airline returns, supporting both the 
asset pricing theory and the investor sentiment hypothesis. Airline stock 
volatility has been demonstrated to be caused by news coverage of 
climate policy in major media outlets; this phenomenon can be con-
nected to shifting investor sentiments during uncertain times (Cevik 
et al., 2022). This line of argument is supported by investor concerns 
about potential detrimental effects of various climate policies on avia-
tion industry operations. Nevertheless, many different kinds of risks 
might impact asset prices; in this instance, the focus of our analysis was 

climate policy concerns. The asset pricing theory states that the price of 
an asset is equal to the total of its future cash flows, discounted using the 
risk-free rate, in the absence of risks (Drobetz, 2000). Our results indi-
cate that the value of these discounted cash flows is typically impacted 
by the occurrence of risks like CPU. To comply with emission laws, CPU 
may compel airlines to invest in new technologies that could raise 
operating costs. These changes could have an impact on the stock values 
of the airlines. 

5.3. Practical implications 

Gaining an understanding of the reaction of the airline sector to-
wards risks inherent in climate policy uncertainty holds significant 
significance for managers, investors, and policymakers in the airline 
sector, as it enables them to effectively address and minimize potential 

Table 9 
SPA test and DM test results for full-sample forecasts of airline returns.   

Models SPA Test DM Test   

MSE MAE RMSE RMAE GARCH GARCH-MIDAS-RV 

DAL GARCH (1,1) 4.88 0.75 3.45 1.37    
(0.05) (0.73) (0.02) (0.02)   

GARCH-MIDAS-RV 2.85 0.48 2.36 0.98    
(0.19) (0.64) (0.07) (0.53)   

GARCH-MIDAS-RV + CPU 5.73 1.32 3.66 1.77 3.86 29.86  
(0.19) (0.65) (0.19) (0.11) (0.14) (0.08) 

LUV GARCH (1,1) 9.92 1.13 4.93 1.66    
(0.01) (0.03) (0.05) (0.03)   

GARCH-MIDAS-RV 9.59 1.27 4.37 5.17    
(0.04) (0.53) (0.02) (0.02)   

GARCH-MIDAS-RV + CPU 12.40 1.94 5.41 2.15 4.43 48.50  
(0.12) (0.24) (0.31) (0.23) (0.44) (0.19) 

UAL GARCH (1,1) 14.83 1.30 6.01 1.79    
(0.06) (0.32) (0.36) (0.81)   

GARCH-MIDAS-RV 8.41 4.21 4.08 6.47    
(0.05) (0.25) (0.06) (0.207)   

GARCH-MIDAS-RV + CPU 14.93 1.43 5.92 1.85 6.82 − 38.51  
(0.03) (0.65) (0.06) (0.01) (0.70) (0.24) 

AAL GARCH (1,1) 3.96 0.61 2.79 1.11    
(0.04) (0.58 (0.01) (0.01   

GARCH-MIDAS-RV 3.37 0.57 2.80 1.17    
(0.15) (0.52 (0.06) (0.43   

GARCH-MIDAS-RV + CPU − 4.95 − 1.14 − 3.16 − 1.53 3.33 25.80  
(0.16) (0.56) (0.16) (0.09) − 0.01 0.00 

ALGT GARCH (1,1) 8.04 0.91 3.99 1.34    
(0.01) (0.02) (0.04) (0.02)   

GARCH-MIDAS-RV 11.36 1.51 5.17 6.13    
(0.03) (0.43) (0.01) (0.01)   

GARCH-MIDAS-RV + CPU − 10.71 − 1.67 − 4.67 − 1.86 4.83** 41.90  
(0.10) (0.21) (0.27) (0.20) (0.03) (0.26) 

ALK GARCH (1,1) 12.01 1.06 4.86 1.45    
(0.05 (0.25) (0.29) (0.63)   

GARCH-MIDAS-RV − 9.96 − 4.98 − 4.83 − 7.67    
(0.04 (0.2) (0.05) (0.16)   

GARCH-MIDAS-RV + CPU 12.90 1.23 5.12 1.60 5.89 − 33.27  
(0.02) (0.56) (0.05) (0.01) (0.34) (0.21) 

HA GARCH (1,1) 4.07 0.63 2.87 1.14    
(0.04) (0.68) (0.02) (0.02)   

GARCH-MIDAS-RV 3.15 0.53 2.61 1.09    
(0.17) (0.58) (0.07) (0.48)   

GARCH-MIDAS-RV + CPU − 5.16 − 1.19 − 3.30 − 1.59 3.48** 26.92**  
(0.17) (0.57) (0.17) (0.09) (0.01) (0.00) 

SKYW GARCH (1,1) 8.26 0.94 4.10 1.38    
(0.01) (0.03) (0.04) (0.03)   

GARCH-MIDAS-RV 10.61 1.41 4.83 5.72    
(0.03) (0.48) (0.02) (0.02)   

GARCH-MIDAS-RV + CPU − 11.17 − 1.75 − 4.88 − 1.94 3.99 43.72  
(0.10) (0.21) (0.27) (0.20) (0.13) (0.17) 

Note: The table shows the results of the Superior Predictive Ability (SPA) and Diebold and Mariano (DM) tests for how well the different models performed in their full- 
sample airline return estimates. The SPA technique, which is used to test the null hypothesis of equal prediction performance, indicates that the benchmark model is 
not less effective than any of the alternatives. The benchmark models for the SPA-test are listed in the second column of the table; the comparable results of SPA tests 
using the MSE, MAE, RMSE, and RMAE loss functions are shown in the next four columns. The model provided in the row calculates each DM statistic in each cell, and it 
is compared to the benchmark model provided in the column. The last two columns of the table reflect the DM test results. The numbers in parenthesis are the p-values 
for the DM and SPA tests. ***, **, and * denote significance at 0.01, 0.05, and 0.10, respectively. 
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risks and susceptibilities. The results of our study suggest that CPU has 
significant adverse effects on the stock returns of airlines. Hence, it is 
imperative for airline sector managers, as well as private and institu-
tional investors, to diligently monitor news trends concerning climate 
policies, as they have the potential to impact portfolio risk and asset 
pricing for investors. 

The airline sector is one of the few with a global reach. To have a 
holistic approach to climate change and perhaps reduce uncertainty, 
governments, aviation authorities, and airlines worldwide must coop-
erate closely to establish climate change policies and frameworks. 
Despite encountering obstacles, the International Civil Aviation Orga-
nization (ICAO) should continue playing a proactive role in emphasizing 
to national aviation regulators the significance of having common in-
ternational GHG emission reduction regulations for international flights. 

Despite the considerable capital required for aircraft investment, 
airlines should progressively enhance their fleets through the acquisi-
tion of low-GHG fuel-efficient jets. As part of an effort to reach net zero 
emissions by 2050, renowned aircraft manufacturers have been collab-
orating closely with engine manufacturers to develop environmentally 
friendly jets. Additionally, airlines should prioritize the reduction of 
GHG emissions as a key focus in their annual reports. 

6. Conclusion 

Our paper investigates the impact of CPU on the volatility of major 
US airlines. The GARCH-MIDAS model is used to investigate the effects 
as well as the extent to which the CPU index component can forecast the 
daily return of each sampled airline via the long-run component of total 

Table 10 
SPA test and DM test results for out-of-sample forecasts of airline returns.   

Models SPA Test DM Test   

MSE MAE RMSE RMAE GARCH GARCH-MIDAS-RV 

DAL GARCH (1,1) 6.79 1.04 4.79 1.90    
(0.06) (0.11) (0.03) (0.03)   

GARCH-MIDAS-RV 3.96 0.67 3.28 1.37    
(0.26) (0.89) (0.10) (0.74)   

GARCH-MIDAS-RV + CPU − 7.96 − 1.84 − 5.09 − 2.46 5.36** 41.51**  
(0.02) (0.90) (0.26) (0.05) (0.01) (0.00) 

LUV GARCH (1,1) 11.11 1.26 5.52 1.86    
(0.01) (0.03) (0.05) (0.03)   

GARCH-MIDAS-RV 10.75 1.42 4.89 5.79    
(0.04) (0.59) (0.02) (0.02)   

GARCH-MIDAS-RV + CPU − 13.88 − 2.17 − 6.06 − 2.41 4.96 54.32  
(0.13) (0.27) (0.34) (0.25) (0.14) (0.21) 

UAL GARCH (1,1) 13.64 1.20 5.53 1.65    
(0.06) (0.29) (0.34) (0.75)   

GARCH-MIDAS-RV − 7.74 − 3.87 − 3.75 − 5.96    
(0.04) (0.23) (0.06) (0.19)   

GARCH-MIDAS-RV + CPU 13.74 1.31 5.45 1.70 6.27 − 35.43**  
(0.02) (0.60) (0.06) (0.01) (0.13) (0.02) 

AAL GARCH (1,1) 6.45 0.99 4.55 1.81    
(0.06) (0.94) (0.02) (0.02)   

GARCH-MIDAS-RV 5.49 0.93 4.56 1.90    
(0.25) (0.84) (0.10) (0.70)   

GARCH-MIDAS-RV + CPU − 8.07 − 1.86 − 5.16 − 2.49 5.43** 42.05**  
(0.27) (0.92) (0.27) (0.15) (0.01) (0.00) 

ALGT GARCH (1,1) 10.21 1.16 5.07 1.70    
(0.01) (0.03) (0.05) (0.03)   

GARCH-MIDAS-RV 14.43 1.91 6.57 7.78    
(0.04) (0.55) (0.02) (0.02)   

GARCH-MIDAS-RV + CPU − 13.60 − 2.13 − 5.94 − 2.36 4.86 53.21  
(0.13) (0.27) (0.34) (0.25) (0.14) (0.21) 

ALK GARCH (1,1) 10.33 0.91 4.19 1.25    
(0.04) (0.21) (0.25) (0.55)   

GARCH-MIDAS-RV − 8.57 − 4.28 − 4.16 − 6.60    
(0.03) (0.18) (0.04) (0.14)   

GARCH-MIDAS-RV + CPU 11.09 1.06 4.40 1.38 5.06** − 28.61**  
(0.02) (0.48) (0.05) (0.01) (0.03) − 0.01 

HA GARCH (1,1) 6.99 1.08 4.94 1.96    
(0.07) (1.17) (0.03) (0.03)   

GARCH-MIDAS-RV 5.41 0.92 4.50 1.87    
(0.30) (1.00) (0.11) (0.83)   

GARCH-MIDAS-RV + CPU − 8.88 − 2.05 − 5.68 − 2.74 5.98** 46.30**  
(0.29) (0.98) (0.29 (0.16) (0.01) (0.00) 

SKYW GARCH (1,1) 10.49 1.19 5.21 1.75    
(0.01) (0.03) (0.05) (0.03)   

GARCH-MIDAS-RV 13.48 1.79 6.14 7.27    
(0.04) (0.61) (0.02) (0.02)   

GARCH-MIDAS-RV + CPU − 14.19 − 2.22 − 6.19 − 2.46 5.07** 55.52  
(0.13) (0.27) (0.34) (0.25) (0.04) (0.21) 

Note: The table shows the results of the Superior Predictive Ability (SPA) and Diebold and Mariano (DM) tests for how well the different models performed in their full- 
sample airline return estimates. The SPA technique, which is used to test the null hypothesis of equal prediction performance, indicates that the benchmark model is 
not less effective than any of the alternatives. The benchmark models for the SPA-test are listed in the second column of the table; the comparable results of SPA tests 
using the MSE, MAE, RMSE, and RMAE loss functions are shown in the next four columns. The model provided in the row calculates each DM statistic in each cell, and it 
is compared to the benchmark model provided in the column. The last two columns of the table reflect the DM test results. The numbers in parenthesis are the p-values 
for the DM and SPA tests. ***, **, and * denote significance at 0.01, 0.05, and 0.10, respectively. 
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volatility. We use three major models: GARCH (1,1), GARCH-MIDAS- 
RV, and GARCH-MIDAS-RV + CPU. The first two models are used as 
benchmark models to assess whether adding CPU to the models im-
proves forecasting accuracy of airline returns. The third model divides 
airline return volatility into long-term and short-term components, 
assuming that CPU influences asset volatility via its long-term compo-
nent. The full-sample estimation findings suggest that CPU has a sub-
stantial impact on only two airlines’ returns. Out-of-sample estimation 
results, on the other hand, demonstrated significant effects of CPU on six 
airlines, including three of the “big four,” namely American Airlines, 
United Airlines, and Delta Airlines. In terms of forecasting airline 
returns, the CPU-based model outperforms the other models. 

Our research is not devoid of limitations. As mentioned earlier, the 
implementation of Regime Switching GARCH-MIDAS assisted in 
reducing the occurrence of structural breaks in airline stock returns. The 
above method does not completely solve the problem, however, unlike 
other estimation models like bivariate GARCH models, wavelet coher-
ence analysis, and others that try to accurately predict price changes in 
assets with structural breaks (Marobhe and Kansheba, 2023; Malik, 
2022). Notably, however, the aforementioned techniques are incapable 
of estimating mixed-frequency data in the same manner as 
GARCH-MIDAS. So, we encourage econometricians to contemplate 
extending asymmetric GARCH models, like Power-GARCH and 
Exponential-GARCH (Marobhe and Dickson, 2022; Yu et al., 2021), to 
work with mixed frequency data. Furthermore, the limitation of our 
research to the US potentially hinders the generalization of our results to 
other regions like Europe and Asia. As detailed in the data section, we 
utilized the available CPU index, which exclusively compiles climate 
policy news specific to the US from the country’s prominent media 
outlets. Therefore, applying the index to examine its impacts on airlines 
in other settings would be impractical. Therefore, we strongly encourage 
developers to aggregate CPU indices at both the country and global 
levels, similar to indices such as the global economic policy uncertainty 
(GEPU) index. Future researchers will be able to evaluate the impact of 
climate policies on airlines worldwide and make comparisons. 
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