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A B S T R A C T

In this paper, the mathematical models for amebiasis are developed and presented. The first
model considers the transmission dynamics of amebiasis coupled with two constant controls:
treatment and sanitation. The next-generation matrix calculates the effective reproductive
number, which is then used to assess model system stability. A sensitivity analysis is performed
to determine the primary factors affecting disease transmission. Nonetheless, the results suggest
that indirect transmission is more crucial than direct transmission in spreading disease. In
addition, we extended the first model to incorporate time-dependent optimal control measures,
namely community awareness, treatment, and sanitation. The aim was to reduce the number of
infections emanating from interaction with carriers, infected people, and polluted environments
while minimizing the expenses associated with adopting controls. The optimal control problem
is solved by applying Pontryagin’s Maximum Principle and forward and backward-in-time
fourth-order Runge–Kutta methods. The results indicate that an awareness program is optimal
when a single control strategy is the only available option. However, when a combination of two
controls is implemented, an approach combining awareness programs and treatment is shown
to be optimal. Generally, the best strategy is implementing a combination of all three controls:
awareness programs, sanitation, and treatment.

. Introduction

Amebiasis is a gastrointestinal illness caused by an infestation with the one-celled parasite called Entamoeba histolytica. The
isease is characterized by loose stools containing blood and mucus within the intestines, commonly known as amoebic diarrhea.
his particular gastrointestinal parasite disease is widely observed among the human population, resulting in an annual incidence
f over 50 million new infections and causing more than 100,000 fatalities globally. Entamoeba comprises three morphologically
ndistinguishable species, including Entamoeba histolytica, which is pathogenic and associated with disease, along with two non-
athogenic variants namely Entamoeba dispar and Entamoeba Moshkovskii [1–4]. According to [5], amebiasis remains a severe public
ealth problem in places marked by a dense population, poor hygiene, and financial restrictions, especially in tropical and subtropical
limates. In advanced countries, amebiasis affects older people more frequently than younger people. It is also prone to affect men
ho have experienced sexual relations with other men or who live in institutionalized environments. However, in tropical areas, the
revalence of amebiasis is different and affects the general population, especially those seeking treatment for diarrhea in healthcare
enters. Therefore, it is crucial to comprehend the epidemiology of this disease in tropical regions where it causes the most illness and

∗ Corresponding author.
E-mail addresses: stephen.edward@udom.ac.tz (S. Edward), godfrey.mpogolo@tia.ac.tz (G.E. Mpogolo).
vailable online 28 October 2023
666-7207/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.rico.2023.100325
eceived 8 January 2023; Received in revised form 1 October 2023; Accepted 22 October 2023

https://www.elsevier.com/locate/rico
http://www.elsevier.com/locate/rico
mailto:stephen.edward@udom.ac.tz
mailto:godfrey.mpogolo@tia.ac.tz
https://doi.org/10.1016/j.rico.2023.100325
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rico.2023.100325&domain=pdf
https://doi.org/10.1016/j.rico.2023.100325
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results in Control and Optimization 13 (2023) 100325S. Edward and G.E. Mpogolo

l
T
c

a
e
a
w
s
h
o
i

H
o
i
b
f
d

m
s
i
b
m

f
W
m
r
t
d

a
e
w
e
s

l
H
d

S
i

2

i
i
t
m
a
c
h
t
T
a

death [6]. Additionally, Entamoeba histolytica can avoid detection and cause damage to other internal human organs like the liver,
ungs, and brain. Amebiasis is a persistent and disfiguring infection under the Neglected Tropical Diseases (NTDs) classification [7].
he clinical presentation of the disease presents a spectrum of symptoms, ranging from asymptomatic colonization to onset of amebic
olitis, marked by diarrhea, and invasive extraintestinal amebiasis, frequently leading to the development of liver abscesses [8].

According to the work by [4,6], an incubation period can last from a few days to several years after being infected with
mebiasis. Typically, the incubation period lasts between 1 to 4 weeks. After this period, the infected individual may develop
ither an asymptomatic (latent) stage or an acute stage of amebiasis colitis. Mature cysts of Entamoeba histolytica are resistant
nd can survive for several weeks in soil, 12 days in cool and damp conditions, and up to 30 days in water. They are also able to
ithstand temperatures ranging from 50 ◦C to 40 ◦C. The development of symptoms in infected individuals depends on their immune

ystem and other unknown biochemical factors of the parasite and the host. Approximately 90% of people infected with Entamoeba
istolytica will experience asymptomatic amebiasis, while the remaining 10% will exhibit amebiasis colitis symptoms [6]. Amebiasis
ccurs after ingesting Entamoeba histolytica cysts spread through polluted food or beverages. Once the infection reaches the large
ntestine, it transforms from a cyst to an invasive trophozoite through cellular division and multiplication [9].

Metronidazole and similar compounds derived from nitroimidazole are commonly used to treat invasive parasitic infections.
owever, these drug therapies are associated with undesirable side effects, costly, and not readily accessible in some countries
r regions [10]. Enhancing water purification systems and promoting better hygiene practices has the potential to reduce disease
ncidence, but it would demand significant time, policy reforms, and financial investments. As a result, an appealing option could
e the development of a vaccine and the implementing of vaccination programs in developing nations. There has been no approval
or human clinical trials of a vaccine against amebiasis. However, promising findings have emerged from recent studies on vaccine
evelopment [11].

A vast of literature on Entamoeba histolytica is from medical, clinical, or other related fields. However, there are very few
athematical works have been done so far to understand the transmission dynamics of amebiasis, such as those by [7,12,13]. The

cholars [12] formulated a mathematical framework: susceptible–exposed–infectious–recovered (SEIR) with a slight modification of
ncluding a carrier-class. This is one of the earliest models developed for amebiasis so far. Also, [7] contributed to the work of [12]
y analyzing their model. The study by [12] was expanded upon by [13], who conducted an in-depth mathematical analysis of the
odel and solved the problem raised numerically.

Optimal control is a mathematical discipline that seeks the most effective means of controlling a dynamical system. Innumerable
ields, such as biomedical sciences, economics, physical science, and engineering, have extensively used the theory (Lenhart &

orkman 2002) [14]. The objective of optimal control in epidemics is to seek, amongst existing options, the most effective one that
inimizes the incidence rate while optimizing the cost of deploying a strategy to control the progression of the disease. Several

esearchers, such as [15–22], have employed optimal control theory to describe intervention strategies. Using optimal control
heory, they demonstrated the substantial role played by control measures (e.g. education, treatment, vaccination, quarantine, social
istancing, face-mask usage in public, use of Personal Protective Equipment (PEP), e.t.c.) in halting the disease’s progression.

Moreover, [23] investigated cholera via double control measures: educational awareness and water chlorination. A cost–benefit
nalysis determined that educational awareness was the most cost-effective method for preventing the outbreak. A study by [24]
stablished a compartmental model for cholera integrating vaccination, treatments, and water sanitation. The optimal control theory
as then applied to find a cost-effective solution for numerous time-dependent cholera interventions. Furthermore, [25] researched
ffective control techniques for dysentery. They concluded that sanitation and education was the most effective and cost-effective
trategy.

Several mathematical works, such as those by [7,12,13], have investigated the dynamics of amebiasis. Nevertheless, the existing
iterature primarily overlooks the impact of environmental pathogens and effective control measures on amebiasis transmission.
ence, it becomes crucial to develop a mathematical model that integrates the effect of environmental pathogens on the transmission
ynamics of amebiasis and optimal strategies for epidemic control.

The rest of the paper is structured as follows: In Section 2, we will go through how to develop and analyze a model, and in
ection 3, we will jump more deeply into the sensitivity analysis. The formulation of an optimization problem and analysis is given
n Section 4. Next, numerical simulation is presented in Section 5, and Section 6 finalizes the paper with concluding remarks.

. Model formulation and analysis

The first part of this paper is derived from the work by [26] posted as a preprint. This study extends the findings of [13] by
ntroducing a new compartment to account for the pathogen reservoir in the surroundings. As a result, the upgraded model will
ncorporate two transmission pathways: direct transmission between individuals and indirect transmission from the surroundings
o individuals. This contrasts with previous studies [7,12,13], which concentrated on direct transmission as the only transmission
ode. Additionally, in contrast to earlier studies, the present model includes two control measures, namely treatment and sanitation,

mong the interventions to mitigate the transmission and spread of amebiasis. In the later section, the study will include awareness
ampaigns as an additional control strategy. Five different and separate epidemiological populations collectively make up the entire
uman population: those considered vulnerable 𝑆(𝑡); those who have been exposed 𝐸(𝑡); those who are proactively infected 𝐼(𝑡),
hose who are carrying the pathogen devoid of exhibiting signs and symptoms 𝐶(𝑡), and those who have made a full recovery 𝑅(𝑡).
he 𝑆𝐸𝐼𝑅 model is modified by adding the carrier compartment 𝐶(𝑡), as evidence suggests that 90% of infected cases remain
2

symptomatic (see [6]). Pathogens need reservoirs, which can be living organisms or non-living sites like soil and water, to persist
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Table 1
Parameters and their description.

Parameter Description Value Source

𝛬 Rate of recruitment of individuals into the susceptible class 469 Humans/year [24]
𝛼1 Transmission rate for infectious individuals 0.6/year [13]
𝛼2 Transmission rates for carriers 1∕3/year [31]
𝛼3 Effective transmission rate of amebiasis due to the environment to human interaction 0.4465/year [3]
𝛿 Incubation rate (Rate at which exposed individuals, 𝐸(𝑡) progress to either class 𝐼(𝑡) or 𝐶(𝑡)) 1/28/day [4,15]
𝜇 Natural human mortality rate 1∕50/year [31]
𝑑1 Disease induced death rate by 𝐼(𝑡) 0.02/year Assumed
𝑑2 Disease induced death rate by 𝐶(𝑡) 0.03/year Assumed
𝜂1 Recovery rate of infectious humans 1∕10/day [32]
𝜂2 Recovery rate of carrier humans 1∕3/year [14]
𝜖1 Pathogens shedding rate into the water sources by infectious human 80 cells/mL/day Assumed
𝜖2 Pathogens shed rate into the water supply by carriers 70 cells/mL/day Assumed
𝑟 (Maximum) per capita growth rate of amebiasis pathogens 0.73/day [33]
𝜇𝑏 Mortality rate of amebiasis pathogens, including phage degradation 0.83/day [25]
𝜙 Wanning rate of diseased induced immunity 1∕17/year [34]
𝜒 Rate at which sanitation leads to death of amebiasis pathogens 2𝜇𝑏/year [25]
𝜏 Treatment rate for infectious individuals (𝐼) 0.4/year Assumed
𝑓 Fraction of exposed individuals who progress to infectious class (𝐼) 0.1 [15]
𝛾 Progression rate for infectious individuals to carriers (𝐼 → 𝐶) 0.4/year Assumed
𝜃 Progression rate for carriers to infectious individuals (𝐶 → 𝐼) 0.6/year Assumed

over time. These reservoirs can become contaminated with pathogens from various sources, such as human feces or intermediate
hosts. An extra compartment, 𝐵(𝑡), is devised, representing the reservoir of amebiasis pathogens in the surroundings, as amebiasis is
frequently contracted by consuming contaminated matter such as water or food [6]. Susceptible individuals are assumed to join the
population at a steady rate 𝛬. Amebiasis infection can be transmitted through direct contact with carriers or infected individuals
at a rate of 𝜆ℎ(𝑡)) or by consuming pathogens from polluted freshwater reservoirs (at a rate of 𝜆𝑏(𝑡)). To represent the cumulative
nfection force, use 𝜆(𝑡):

𝜆(𝑡) = 𝜆ℎ(𝑡) + 𝜆𝑏(𝑡), (1)

here

𝜆ℎ(𝑡) = 𝛼1𝐼(𝑡) + 𝛼2𝐶(𝑡),

𝜆𝑏(𝑡) = 𝛼3𝐵(𝑡).

ikewise, the parameters; 𝛼1 and 𝛼2 are the transmission rates for infectious and carriers individuals, respectively, while, 𝛼3 > 0 is
ndividuals’ ingestion rate of amebiasis pathogens. The exposed population can join infectious or carrier classes. A proportion, 𝑓 , of
he exposed population proceeds to the contagious phase at a rate denoted by 𝛿. In contrast, the remaining population undergoes an
nalogous transition to the carrier stage at the same rate. Attempts to eradicate amebiasis are made more difficult because carriers
how no signs of the disease despite still being contagious. Some infected individuals recover naturally at the rate 𝜂1 or through
reatment at a rate 𝜏, while others may progress to becoming carriers at a rate 𝛾. This assumption is consistent with [10], who
onfirmed the presence of possible treatments for amebiasis. Based on studies by [27–29], it has been found that only a minority
one in every four) of asymptomatic individuals with Entamoeba histolytica infections progress to develop clinical symptoms. Thus,
t is reasonable to assume that the carriers may regress to infectious class at the rate 𝜃, while others may recover naturally at the
ate 𝜂2. Since amebiasis is known to be fatal [4], infectious individuals and carriers may die from amebiasis at rates of 𝑑1 and
2, respectively. Any individuals from each compartment may also experience natural death, modeled by a rate of 𝜇. It is also
cknowledged that amebiasis generates a temporary immunity that vanishes at a rate of 𝜙 over time. As a result, fully recovered
atients may re-enter the susceptible population after losing their immunity.

Infected people discharge pathogens into the surroundings at two different rates, 𝜖1 and 𝜖2, depending on whether they are in
tate 𝐼(𝑡) or state 𝐶(𝑡). It is hypothesized that individuals from compartment 𝐼 shed at the rate 𝜖1, notably higher than that of the
arrier group (𝐶), 𝜖2. It is important to remember that the 𝐶 group play an essential role in the transmission dynamics of amebiasis,
ven though they shed few pathogens and remain symptom-free for extended periods [30]. Amebiasis pathogens multiply by birth
nd increase at the rate 𝑟 and decay naturally at the rate 𝜇𝑏 or diminish through sanitation measures at the rate 𝜒 . In this scenario,
is assumed to be less than 𝜇𝑏, so pathogen growth does not surpass mortality; this assumption is made to make our model realistic
ith epidemiological meaningful solutions. Detailed descriptions of the model’s parameters are in Table 1. Fig. 1 presents the flow
3

iagram for the dynamics of amebiasis.
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Fig. 1. A flow diagram for amebiasis transmission dynamics.

From the above descriptions, the following model is established and presented by a coupled system of differential equations:
𝑑𝑆
𝑑𝑡

= 𝛬 + 𝜙𝑅 − (𝜆(𝑡) + 𝜇)𝑆,

𝑑𝐸
𝑑𝑡

= 𝜆(𝑡)𝑆 − (𝜇 + 𝛿)𝐸,

𝑑𝐼
𝑑𝑡

= 𝑓𝛿𝐸 + 𝜃𝐶 − (𝜇 + 𝑑1 + 𝜂1 + 𝛾 + 𝜏)𝐼,

𝑑𝐶
𝑑𝑡

= (1 − 𝑓 )𝛿𝐸 + 𝛾𝐼 − (𝜇 + 𝑑2 + 𝜂2 + 𝜃)𝐶,

𝑑𝑅
𝑑𝑡

= (𝜂1 + 𝜏)𝐼 + 𝜂2𝐶 − (𝜇 + 𝜙)𝑅,

𝑑𝐵
𝑑𝑡

= 𝑟𝐵 + 𝜖1𝐼 + 𝜖2𝐶 − (𝜇𝑏 + 𝜒)𝐵.

(2)

The initial conditions for the model system (2) are 𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0, 𝐵(0) ≥ 0.

.1. Boundedness of solutions

The human population, denoted by 𝑇𝐻 , and the number of pathogens in the aquatic setting, denoted by 𝑇𝐵 , are two distinct
omponents of the model system (2) 𝑇𝐻 = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝑅(𝑡)) ∈ R5

+ ∶ 𝑆(𝑡)+𝐸(𝑡)+𝐼(𝑡)+𝐶(𝑡)+𝑅(𝑡) = 𝑁(𝑡)} and 𝑇𝐵 = {𝐵(𝑡) ∈ R1
+}

espectively.
From the model system (2), the differential inequality of the susceptible population is given by

𝑑𝑆
𝑑𝑡

+ 𝜇𝑆 ≤ 𝛬 + 𝜙𝑅. (3)

The differential inequality (3) can be solved to obtain

𝑆(𝑡) ≤ 𝛬
𝜇

+ 𝑒−𝜇𝑡 ∫

𝑡

0
𝜙𝑅(𝑥)𝑒−𝜇𝑥𝑑𝑥. (4)

pplying the theorem of differential inequality by Birkhoff and Rota [35], we obtain

lim
𝑡→∞

sup𝑆(𝑡) ≤ 𝛬
𝜇
.

herefore, a susceptible population’s state variable is less than or equal to the quotient of the recruitment rate and the natural death
ate. We must also into account that 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝐶 +𝑅, reflects the total population. Differentiate 𝑁 with respect to 𝑡 i.e 𝑑𝑁

𝑑𝑡 ,
plug the equations of system (2) into the resulting expression gives

𝑑𝑁 = 𝛬 − 𝜇𝑁 − 𝑑 𝐼 − 𝑑 𝐶. (5)
4

𝑑𝑡 1 2
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Solving the corresponding Eq. (5) with 𝑁0 as the initial population yields the following results:

𝑁(𝑡) ≤ 𝛬
𝜇

− (𝛬
𝜇

−𝑁0)𝑒−𝜇𝑡, (6)

therefore,

lim
𝑡→∞

sup𝑁(𝑡) ≤ 𝛬
𝜇

ince 𝑁 is the total population, each state variable is less or equal to 𝛬
𝜇 . Using the equation for 𝐵 from the system (2), We obtain

differential inequality:
𝑑𝐵
𝑑𝑡

+ (𝜇𝑏 + 𝜒 − 𝑟)𝐵 = 𝜖1𝐼 + 𝜖2𝐶 ≤ (𝜖1 + 𝜖2)
𝛬
𝜇
,

which simplifies to
𝑑𝐵
𝑑𝑡

+ (𝜇𝑏 + 𝜒 − 𝑟)𝐵 ≤ (𝜖1 + 𝜖2)
𝛬
𝜇
. (7)

he solution to Eq. (7) can be obtained by using integrating factors to get

𝐵(𝑡) =
(𝜖1 + 𝜖2)𝛬

𝜇(𝜇𝑏 + 𝜒 − 𝑟)
+ 𝐵0𝑒

−(𝜇𝑏+𝜒−𝑟)𝑡,

where 𝐵0 = 𝐵(0), is an initial solution. Therefore,

lim
𝑡→∞

sup𝐵(𝑡) ≤
(𝜖1 + 𝜖2)𝛬

𝜇(𝜇𝑏 + 𝜒 − 𝑟)
.

Hence, the domain of biological significance of the system (2) is

𝑇 =
[

𝑆,𝐸, 𝐼, 𝐶,𝑅, 𝐵 ≥ 0 ∶ 𝑆 + 𝐸 + 𝐼 + 𝐶 + 𝑅 ≤ 𝛬
𝜇
,𝐵 ≤

(𝜖1 + 𝜖2)𝛬
𝜇(𝜇𝑏 + 𝜒 − 𝑟)

]

. (8)

Under the flow induced by the system (2), the domain 𝑇 is positively invariant . Consequently, it is feasible to evaluate the model,
within the field 𝑇 , hence the system (2) has biological importance.

2.2. Existence of equilibrium solutions

Here, we will show whether or not the equilibrium exists. By making the right-hand side (2) equal to zero and then solving the
obtained system, we may find the equilibrium points:

0 = 𝛬 + 𝜙𝑅∗ − (𝜆∗(𝑡) + 𝜇)𝑆∗,

0 = 𝜆∗(𝑡)𝑆∗ − (𝜇 + 𝛿)𝐸∗,

0 = 𝑓𝛿𝐸∗ + 𝜃𝐶∗ − (𝜇 + 𝑑1 + 𝜂1 + 𝛾 + 𝜏)𝐼∗,

0 = (1 − 𝑓 )𝛿𝐸∗ + 𝛾𝐼∗ − (𝜇 + 𝑑2 + 𝜂2 + 𝜃)𝐶∗,

0 = (𝜂1 + 𝜏)𝐼∗ + 𝜂2𝐶
∗ − (𝜇 + 𝜙)𝑅∗,

0 = 𝑟𝐵∗ + 𝜖1𝐼
∗ + 𝜖2𝐶

∗ − (𝜇𝑏 + 𝜒)𝐵∗.

(9)

where

𝜆∗(𝑡) = 𝛼1𝐼
∗ + 𝛼2𝐶

∗ + 𝛼3𝐵
∗. (10)

To simplify the process of solving the system (9), let 𝑤0, 𝑤2, 𝑤3 > 0 such that

𝑤0 = 𝜇 + 𝛿,

𝑤1 = 𝜇 + 𝑑1 + 𝜂1 + 𝛾 + 𝜏,

𝑤2 = 𝜇 + 𝑑2 + 𝜂2 + 𝜃,

𝑤3 = 𝜇𝑏 + 𝜒 − 𝑟.

(11)

Solving the system (9), we have

𝐸∗ = ℎ1𝐼
∗,

𝐶∗ = ℎ2𝐼
∗,

𝑅∗ = ℎ3𝐼
∗,

𝑆∗ = 𝛬
𝜇

+
(

𝜙ℎ3
𝜇

−
(𝜇 + 𝛿)ℎ1

𝜇

)

𝐼∗,

𝐵∗ =
(

𝜖1 + 𝜖2ℎ2
)

𝐼∗.

(12)
5

𝑤3
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where

ℎ1 =
𝑤1𝑤2 − 𝜃𝛾

𝑓𝛿𝑤2 + (1 − 𝑓 )𝛿𝜃
,

ℎ2 =
𝑓𝛿 + (1 − 𝑓 )𝑤1𝛿
𝑓𝛿𝑤2 + (1 − 𝑓 )𝛿𝜃

,

ℎ3 =
𝜂1 + 𝜏 + 𝜂2ℎ2

𝑓𝛿𝑤2 + (1 − 𝑓 )𝛿𝜃
.

It can be noted that

𝜆∗ = 𝛼1𝐼
∗ + 𝛼2𝐶

∗ + 𝛼3𝐵
∗ = ℎ4𝐼

∗, (13)

where

ℎ4 = 𝛼1 + 𝛼2ℎ2 +
𝛼3

(

𝜖1 + 𝜖2ℎ2
)

𝑤3
.

lug in 𝜆∗, 𝑆∗ and 𝐸∗ in second Eq. (9) to get

ℎ4𝐼
∗
(

𝛬
𝜇

+
(

𝜙ℎ3
𝜇

−
(𝜇 + 𝛿)ℎ1

𝜇

)

𝐼∗
)

= (𝜇 + 𝛿)ℎ1𝐼∗. (14)

olving (14) gives:

𝐼∗ = 0,

𝐼∗ = 𝛬
𝜇 + 𝛿

+
𝜙ℎ3
𝜇 + 𝛿

− 1
ℎ4

,
(15)

𝐼∗ = 0 corresponds to the existence of disease-free whereas 𝐼∗ = 𝛬
𝜇+𝛿 + 𝜙ℎ3

𝜇+𝛿 − 1
ℎ4

corresponds to the existence of the endemic
equilibrium point.

Disease Free Equilibrium Point
Disease-free equilibrium occurs when no new infections occur, preferably when 𝐼∗ = 0, plug in this condition into Eq. (12) to

obtain 𝐸∗ = 𝐶∗ = 𝑅∗ = 𝐵∗ = 0 and 𝑆∗ = 𝛬
𝜇 . Hence, the disease-free equilibrium is given by

𝐸0 = (𝑆0, 𝐸0, 𝐼0, 𝐶0, 𝑅0, 𝐵0) =
(

𝛬
𝜇
, 0, 0, 0, 0, 0

)

. (16)

Endemic Equilibrium Point
The endemic equilibrium point occurs when the disease stabilizes in the community. This is a nontrivial equilibrium point of

he model system (9): 𝑆∗, 𝐸∗, 𝐼∗, 𝐶∗, 𝑅∗, 𝐵∗ > 0. The endemic equilibrium point for this scenario can be established by substituting
he expression for 𝐼∗ from Eq. (15) into Eq. (12).

.3. Reproduction number and stability analysis of steady states

The two reproduction numbers most discussed in epidemiological studies are the basic reproduction number denoted by 𝑅0 and
he effective reproduction number 𝑅𝑒 or 𝑅𝑡 [36]. 𝑅0 embodies the hypothetical transmission potential of a disease in a completely
usceptible population with no interventions, whereas 𝑅𝑒 reflects the actual transmission potential at a particular instant, considering
mmunity and intervention strategies. 𝑅0 is a constant, while 𝑅𝑒 can vary as outbreak conditions change. 𝑅0 is a useful concept
or comprehending the inherent contagiousness of a disease, whereas 𝑅𝑒 aids in assessing the effect of control measures on disease
ransmission. Since our model has captured some control parameters as our goal is to investigate their impacts, it is, therefore,
mportant to derive the effective number rather than the basic reproduction number.

In the context of disease control, 𝑅𝑒 is a critical metric because it helps public health officials to understand how easily a disease
an spread and to design effective strategies to control or prevent its transmission. If the value 𝑅𝑒 < 1, the disease is unlikely
o spread widely in a population. Therefore, it may be possible to control or eliminate the disease through sanitation, education
ampaigns, treatment, vaccination, contact tracing, quarantine, etc. However, if 𝑅𝑒 > 1, it suggests the disease could spread fast,
eaching epidemics or pandemic proportions. By understanding the 𝑅𝑒 value of a disease, public health officials can design targeted
nterventions to reduce the number of new infections and bring 𝑅𝑒 < 1. Ultimately, disease control aims to reduce 𝑅𝑒 to a level
here the disease is no longer a significant public health threat.

The magnitude of 𝑅𝑒 also allows us to evaluate the stability of the equilibria and, hence, the presence or absence of the disease
rom the community. Each infected person will spread the disease to less than one individual if 𝑅𝑒 < 1; therefore, the disease will
6

ie out. Also, each infected person can spread the disease to more than one other person when 𝑅𝑒 > 1, leading to an epidemic. A
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large value of 𝑅𝑒 number might suggest an alarming disease outbreak. In this study, the expression for 𝑅𝑒 is determined following
the next-generation operator method [37,38]. The procedure includes determining the spectral radius of the matrix

𝐹𝑉 −1 =
[

𝜕F𝑖 (𝐸0)
𝜕𝑥𝑗

] [

𝜕V𝑖 (𝐸0)
𝜕𝑥𝑗

]−1
, (17)

where F𝑖 represents the rate at which new infections emerge in compartment 𝑖, V𝑖 is the transfer of infections from compartment
𝑖 to another and 𝐸0 is the disease-free equilibrium. The equations involving the infectious classes of 𝐸, 𝐼 , 𝐶, and 𝐵 are rewritten
based on the system in (2). Consequently, the system

𝑑𝐸
𝑑𝑡

= 𝜆(𝑡)𝑆 −𝑤0𝐸,

𝑑𝐼
𝑑𝑡

= 𝛿𝐸 −𝑤1𝐼,

𝑑𝐶
𝑑𝑡

= 𝛾𝐼 −𝑤2𝐶,

𝑑𝐵
𝑑𝑡

= 𝜖1𝐼 + 𝜖2𝐶 −𝑤3𝐵.

(18)

where 𝑤0, 𝑤1, 𝑤2, 𝑤3 are defined in Eq. (11). From Eq. (18) one can extract:

F𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛼3𝐵𝑆 + 𝛼1𝐼𝑆 + 𝛼2𝐶𝑆
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

, (19)

V𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤0𝐸
𝑤1𝐼 − 𝛿𝐸
𝑤2𝐶 − 𝛾𝐼

(𝜇𝑏 + 𝜒 − 𝑟)𝐵 − 𝜖1𝐼 − 𝜖2𝐶

⎤

⎥

⎥

⎥

⎥

⎦

. (20)

y determining the partial derivative of F𝑖 and V𝑖 with respect to 𝐸, 𝐼, 𝐶 and 𝐵 at 𝐸0, we obtain

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝛼1𝑆0 𝛼2𝑆0 𝛼3𝑆0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (21)

𝑉 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤0 0 0 0
−𝑓𝛿 𝑤1 −𝜃 0
𝑓 − 1 −𝛾 𝑤2 0
0 −𝜖1 −𝜖2 𝑤3

⎤

⎥

⎥

⎥

⎥

⎦

. (22)

Therefore, the effective reproduction number (𝑅𝑒) is

𝑅𝑒 = 𝜌(𝐹𝑉 −1) = 𝑅1 + 𝑅2 + 𝑅3, (23)

where

𝑅1 =

(

𝑓𝛿 𝑤2 + (1 − 𝑓 )𝜃
)

𝛼1𝑆0

(

𝑤2𝑤1 − 𝛾 𝜃
)

𝑤0
,

𝑅2 =

(

𝑤1(1 − 𝑓 ) + 𝛾 𝑓𝛿
)

𝛼2𝑆0

(

𝑤2𝑤1 − 𝛾 𝜃
)

𝑤0
,

𝑅3 =

(

𝜖1𝑓𝛿 𝑤2 + 𝜖2𝛾 𝑓𝛿 + (1 − 𝑓 )
(

𝜖1𝜃 + 𝜖2𝑤1
))

𝛼3𝑆0

(

𝑤2𝑤1 − 𝛾 𝜃
)

𝑤0𝑤3
,

hile terms 𝑤0, 𝑤1, 𝑤2 and 𝑤3 have been defined in (11), whereas, 𝑆0 is defined in Eq. (16). Additionally, 𝑅1, 𝑅2, and 𝑅3 denotes
the partial reproduction number generated by 𝐼-to-𝑆, 𝐶-to-𝑆, and 𝐵-to-𝑆 transmission, respectively.

2.4. Local stability of disease-free equilibrium

In this part we prove for the local stability of disease-free equilibrium determined in (16). We begin by stating the theorem
below:

Theorem 1. The DFE of the model system (2) is locally asymptotically stable if 𝑅 < 1 and unstable if 𝑅 > 1.
7

𝑒 𝑒



Results in Control and Optimization 13 (2023) 100325S. Edward and G.E. Mpogolo

w

w

M

T
r

a

Proof. The Jacobian Matrix 𝐽 is obtained by partially differentiating the system (2) with respect to (𝑆,𝐸, 𝐼, 𝐶,𝑅, 𝐵) at the
disease-free equilibrium.

𝐽 (𝐸0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝜇 0 −𝛼1𝑆0 −𝛼2𝑆0 𝜙 −𝛼3𝑆0

0 −𝑤0 𝛼1𝑆0 𝛼2𝑆0 0 𝛼3𝑆0

0 𝛿 −𝑤1 0 0 0
0 0 𝛾 −𝑤2 0 0
0 0 𝜂1 + 𝜏 𝜂2 −𝑤3 0
0 0 𝜖1 𝜖2 0 −𝑤4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (24)

here 𝑤0, 𝑤1 and 𝑤2 have been defined in Eq. (11). The matrix (24) has two trivial negative eigenvalues 𝜆 = −𝜇 and 𝜆 = −𝑤3 =
−(𝜇𝑏 + 𝜒 − 𝑟). If we set 𝐻11 = 𝑤0,𝐻12 = 𝛼1𝑆0,𝐻13 = 𝛼2𝑆0,𝐻14 = 𝑆0𝛼3,𝐻21 = 𝛿,𝐻22 = 𝑤1,𝐻32 = 𝛾,
𝐻33 = 𝑤2,𝐻42 = 𝜖1,𝐻43 = 𝜖2,𝐻44 = 𝜇𝑏 + 𝜒 − 𝑟, then the remaining 4 × 4 sub-matrix is given as:

𝐽1(𝐸0) =

⎡

⎢

⎢

⎢

⎢

⎣

−𝐻11 𝐻12 𝐻13 𝐻14

𝐻21 −𝐻22 0 0
0 𝐻32 −𝐻33 0
0 𝐻42 𝐻43 −𝐻44

⎤

⎥

⎥

⎥

⎥

⎦

. (25)

The rest of the eigenvalues are the roots of the polynomial: |𝐽1(𝐸0) − 𝜆| = 0, which is given by

𝜆4 + 𝑐3𝜆
3 + 𝑐2𝜆

2 + 𝑐1𝜆 + 𝑐0 = 0, (26)

here the constants are such that
𝑐3 =𝐻11 +𝐻22 +𝐻33 +𝐻44,

𝑐2 =
(

𝐻44𝐻33 +𝐻44𝐻22 +𝐻44𝐻11 +𝐻33𝐻22 +𝐻33𝐻11 +𝐻22𝐻11(1 − 𝑅𝑑 )
)

,

𝑐1 =𝐻11𝐻22𝐻44
(

1 −
(

𝑅𝑎 + 𝑅𝑑
))

+𝐻11𝐻22𝐻33
(

1 −
(

𝑅𝑐 + 𝑅𝑑
))

+ 𝐻22𝐻33𝐻44 +𝐻11𝐻33𝐻44,

𝑐0 =𝐻44𝐻33𝐻22𝐻11
(

1 − 𝑅𝑒
)

.

oreover, 𝑅𝑒 can be split into parts

𝑅𝑒 = 𝑅𝑎 + 𝑅𝑏 + 𝑅𝑐 + 𝑅𝑑 , (27)

where

𝑅𝑎 =
𝐻43𝐻32𝐻21𝐻14
𝐻44𝐻33𝐻22𝐻11

,

𝑅𝑏 =
𝐻42𝐻21𝐻14𝐻33
𝐻44𝐻33𝐻22𝐻11

,

𝑅𝑐 =
𝐻44𝐻32𝐻21𝐻13
𝐻44𝐻33𝐻22𝐻11

,

𝑅𝑑 =
𝐻44𝐻33𝐻21𝐻12
𝐻44𝐻33𝐻22𝐻11

.

o ensure that all roots of Eq. (26) have negative real parts, the Routh–Hurwitz stability criterion (for further details refer [39,40])
equires that

𝑐3 > 0, 𝑐2 > 0, 𝑐1 > 0, 𝑐0 > 0, (28)

nd
𝐷1 = 𝑐3 > 0,

𝐷2 =
|

|

|

|

|

|

𝑐3 1
𝑐1 𝑐2

|

|

|

|

|

|

= 𝑐3𝑐2 − 𝑐1 > 0,

𝐷3 =
|

|

|

|

|

|

|

𝑐3 1 0
𝑐1 𝑐2 𝑐3
0 𝑐0 𝑐1

|

|

|

|

|

|

|

= 𝑐1𝑐2𝑐3 − 𝑐21 − 𝑐0𝑐
2
3 > 0,

𝐷4 =

|

|

|

|

|

|

|

|

𝑐3 1 0 0
𝑐1 𝑐2 𝑐3 1
0 𝑐0 𝑐1 𝑐2

|

|

|

|

|

|

|

|

= 𝑐0
(

𝑐1𝑐2𝑐3 − 𝑐21 − 𝑐0𝑐
2
3
)

> 0.

(29)
8

|

0 0 0 𝑐0 |
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It is obvious that 𝐷1 = 𝑐3 > 0. In addition, if 𝑅𝑒 < 1, it implies that 𝑅𝑎, 𝑅𝑏, 𝑅𝑐 , 𝑅𝑑 < 1 and hence 𝑐0, 𝑐1, 𝑐2 > 0. Also, 𝐷2 can be

hown to be positive as follows:

𝐷2 = (𝐻11 +𝐻22 +𝐻33 +𝐻44)(𝐻11𝐻33 +𝐻11𝐻44 +𝐻22𝐻33 +𝐻22𝐻44 +𝐻33𝐻44 +𝐻11𝐻22(1 − 𝑅𝑑 ))

− 𝐻11𝐻33𝐻44 −𝐻22𝐻33𝐻44 −𝐻11𝐻22𝐻44(1 − 𝑅𝑎 − 𝑅𝑑 ) −𝐻11𝐻22𝐻33(1 − 𝑅𝑐 − 𝑅𝑑 ),

The only remaining condition to show is

𝐷3 = 𝑐1(𝑐2𝑐3 − 𝑐1) − 𝑐0𝑐
2
3 > 0. (30)

To prove the inequality (30) , it is sufficient to establish the following two inequalities:

𝑐1𝑐2𝑐3 > 2𝑐21 , (31)

𝑐1𝑐2𝑐3 > 2𝑐0𝑐23 . (32)

To show (31), we write 𝑐2𝑐3 − 2𝑐1 into the sum of the following parts:

𝑐2𝑐3 − 2𝑐1 =𝐻11𝐻
2
33 +𝐻2

11𝐻33 +𝐻11𝐻
2
44 +𝐻22𝐻

2
33 +𝐻2

11𝐻44

+ 𝐻2
22𝐻33 +𝐻22𝐻442 +𝐻2

22𝐻44 +𝐻33𝐻442 +𝐻2
33𝐻44 +𝐻11𝐻22𝐻33 +𝐻11𝐻22𝐻44

+ 𝐻11𝐻33𝐻44 +𝐻22𝐻33𝐻44 +𝐻11𝐻
2
22(1 − 𝑅𝑑 ) +𝐻2

11𝐻22(1 − 𝑅𝑑 )

+ 2𝐻11𝐻22𝐻44𝑅𝑎 + 2𝐻11𝐻22𝐻33𝑅𝑐 +𝐻11𝐻22𝐻33𝑅𝑑 +𝐻11𝐻22𝐻44𝑅𝑑 .

Similarly, to show (32), we write 𝑐1𝑐2 − 2𝑐0𝑐3 into the sum of parts as follows:

𝑐1𝑐2 − 2𝑐0𝑐3 =𝐻11𝐻
2
33𝐻

2
44 +𝐻2

11𝐻33𝐻
2
44 +𝐻2

11𝐻
2
33𝐻44 +𝐻22𝐻

2
33𝐻

2
44 +𝐻2

22𝐻33𝐻
2
44 +𝐻2

22𝐻
2
33𝐻44

+𝐻11𝐻
2
22𝐻

2
44(1 − 𝑅𝑎 − 𝑅𝑑 ) +𝐻2

11𝐻22𝐻
2
44(1 − 𝑅𝑎 − 𝑅𝑑 )

+𝐻2
11𝐻

2
22𝐻44(1 − 𝑅𝑎 − 2𝑅𝑑 + 𝑅𝑎𝑅𝑑 + 𝑅2

𝑑 ) +𝐻11𝐻
2
22𝐻

2
33(1 − 𝑅𝑐 )

+𝐻2
11𝐻22𝐻

2
33(1 − 𝑅𝑐 − 𝑅𝑑 ) +𝐻2

11𝐻
2
22𝐻33(1 − 𝑅𝑐 − 2𝑅𝑑 + 𝑅2

𝑑 + 𝑅𝑐𝑅𝑑 )

+𝐻11𝐻
2
22𝐻

2
33(1 − 𝑅𝑐 − 𝑅𝑑 ) +𝐻11𝐻22𝐻33𝐻

2
44 +𝐻11𝐻22𝐻

2
33𝐻44 +𝐻11𝐻22𝐻33𝐻

2
44𝑅𝑎

+2𝐻11𝐻22𝐻
2
33𝐻44𝑅𝑎 +𝐻11𝐻

2
22𝐻33𝐻44𝑅𝑎 +𝐻2

11𝐻22𝐻33𝐻44𝑅𝑎

+2𝐻11𝐻22𝐻33𝐻
2
44𝑅𝑏 + 2𝐻11𝐻22𝐻

2
33𝐻44𝑅𝑏 + 2𝐻11𝐻

2
22𝐻33𝐻44𝑅𝑏

+2𝐻2
11𝐻22𝐻33𝐻44𝑅𝑏 + 2𝐻11𝐻22𝐻33𝐻

2
44𝑅𝑐 +𝐻11𝐻22𝐻

2
33𝐻44𝑅𝑐 +𝐻11𝐻

2
22𝐻33𝐻44𝑅𝑐

+𝐻2
11𝐻22𝐻33𝐻44𝑅𝑐 +𝐻11𝐻22𝐻33𝐻

2
44𝑅𝑑 +𝐻11𝐻22𝐻

2
33𝐻44𝑅𝑑

+𝐻11𝐻
2
22𝐻33𝐻44(1 − 𝑅𝑑 ) +𝐻2

11𝐻22𝐻33𝐻44(1 − 𝑅𝑑 ) +𝐻2
11𝐻

2
22𝐻44𝑅𝑎𝑅𝑑 .

It can be noted that if 𝑅𝑒 < 1, then each 𝑅𝑎, 𝑅𝑏, 𝑅𝑐 , 𝑅𝑑 < 1 and therefore 𝑐1𝑐2 − 2𝑐0𝑐3 > 0 and 𝑐2𝑐3 − 2𝑐1 > 0. With these
results, it can be concluded that Eqs. (31) and (32) hold, and so does the condition (30). Moreover, the proof for condition 𝐷4
can be established from 𝐷4 = 𝑐0𝐷3. Fortunately, we have already proved that 𝐷3 > 0. Therefore, it is clear that 𝐷4 = 𝑐0𝐷3 > 0.
Thus, all conditions of Routh–Hurwitz for this case (Eqs. (28) and (29)) are satisfied, then the disease-free equilibrium 𝐸0 is locally
asymptotically stable whenever 𝑅𝑒 < 1. □

2.5. Global stability of disease-free equilibrium point

The following result is presented based on the global stability of the disease-free equilibrium.

Theorem 2. If 𝑅𝑒 < 1, the disease-free equilibrium point is globally asymptotically stable and unstable if 𝑅𝑒 > 1.

Proof. Using the comparison theorem [41], the rate of change of the variables representing the infected components of the model
system (2) can be re-written as,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑑𝐸
𝑑𝑡
𝑑𝐼
𝑑𝑡
𝑑𝐶
𝑑𝑡
𝑑𝐵
𝑑𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
(

𝐹 − 𝑉
)

⎛

⎜

⎜

⎜

⎜

⎝

𝐸
𝐼
𝐶
𝐵

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎝

0 𝛼1𝑆0 𝛼2𝑆0 𝛼3𝑆0

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝐸
𝐼
𝐶
𝐵

⎞

⎟

⎟

⎟

⎟

⎠

, (33)

implying that

⎛

⎜

⎜

⎜

⎜

⎜

𝑑𝐸
𝑑𝑡
𝑑𝐼
𝑑𝑡
𝑑𝐶
𝑑𝑡
𝑑𝐵

⎞

⎟

⎟

⎟

⎟

⎟

≤
(

𝐹 − 𝑉
)

⎛

⎜

⎜

⎜

⎜

⎝

𝐸
𝐼
𝐶
𝐵

⎞

⎟

⎟

⎟

⎟

⎠

, (34)
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⎠
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Table 2
Parameters and their Sensitivity Indices.

Parameter Sensitivity index Parameter Sensitivity index

𝛬 +1.0000 𝑑2 −0.0364
𝛼1 +0.0134 𝜂1 −0.0416
𝛼2 +0.0068 𝜂2 −0.0364
𝛼3 +0.9799 𝜖1 +0.5855
𝛾 −0.0192 𝜖2 +0.3943
𝛿 −0.2883 𝑟 +0.1633
𝜇 −1.9958 𝜏 −0.2082
𝜇𝑏 −0.6532 𝜃 +0.19395
𝜒 −0.4899 𝑓 −0.0985
𝑑1 −0.1561

with 𝐹 and 𝑉 being Jacobian matrices see (21) and (22). Following the stability results of Theorem 1, we know that the eigenvalues
of the matrix (𝐹−𝑉 ) have negative real components, then system (2) is stable whenever 𝑅𝑒 < 1. So (𝑆,𝐸, 𝐼, 𝐶, 𝐵,𝑅) → (𝑆0, 0, 0, 0, 0, 0)
and 𝑆 → 𝑆0 as 𝑡 → ∞. By the comparison theorem (see [41] for details) (𝑆,𝐸, 𝐼, 𝐶, 𝐵,𝑅) → 𝐸0 as 𝑡 → ∞. Therefore, 𝐸0 is globally
asymptotically stable whenever 𝑅𝑒 < 1. □

The epidemiological significance of Theorem 2 is that it provides important insights into disease control and prevention strategies.
Public health officials can determine whether or not the disease is likely to become endemic in a population by estimating the basic
reproduction number of a disease. Suppose the basic reproduction number is less than one; in that case, the disease is unlikely
to become established in the population, and public health officials may focus their efforts on preventing the introduction of the
disease into the population or on quickly identifying and treating individuals who become infected.

3. Sensitivity analysis

In a nutshell, sensitivity analysis looks into how changing the model’s inputs affects the results. This analysis contributes to the
rise of confidence regarding the model by evaluating uncertainties connected to its parameters, which the analysis can alter. This
method is frequently used to evaluate the model’s sensitivity to changes in input parameters because of its usefulness in providing
rough estimates of the effects of such changes. That is why it is useful for prioritizing intervention efforts by showing which factors
impact the model most.

Here, we will explore the two main types of sensitivity analysis approaches: local and global, and their respective implications.

3.1. Local sensitivity analysis

Unlike global sensitivity analysis, which considers the variation introduced by all input parameters, local sensitivity analysis
evaluates the effect of each parameter on the model at distinct points within the parameter space.

Using the effective reproduction number 𝑅𝑒 established by Eq. (23), we will determine the model’s local sensitivity (2). An
analytical expression for the sensitivity index will be derived using the normalized forward sensitivity index as defined by [42].

𝛱𝑅𝑒
𝛬 =

𝜕𝑅𝑒
𝜕𝛬

× 𝛬
𝑅𝑒

= +1 (35)

𝛱𝑅𝑒
𝜇 =

𝜕𝑅𝑒
𝜕𝜇

×
𝜇
𝑅𝑒

= −1.9958 (36)

The rest of the sensitivity indices for all parameters used in Eq. (23) can be computed similarly. Table 2 shows the sensitivity
ndices of 𝑅𝑒 for all parameters.

From Table 2, we can obtain 𝛱𝑅𝑒
𝜇 = −1.9958, this means that an increase in 𝜇 will cause a decrease in 𝑅𝑒. Similarly, a decrease

n 𝜇 will cause an increase in 𝑅𝑒, as they are inversely proportional. We can also note that 𝑑1, 𝑑2, 𝜂1, 𝜂2, 𝜇𝑏, 𝛾, 𝜏 and 𝜒 are all negative
ence these parameters are inversely proportional to 𝑅𝑒. This means that if any of these factors is increased (decreased), 𝑅𝑒 will
ecrease (increase).

Nonetheless, it can be noted that 𝛱𝑅𝑒
𝛬 = +1 implies any rise in 𝛬 will result in an equal rise in 𝑅𝑒. Conversely, if you reduce 𝛬,

𝑒 will also go down because the two quantities are inversely proportional. We can also note that the indices for 𝛼1, 𝛼2, 𝛼3, 𝜖1, 𝜖2, 𝜃 or
> 0 hence these parameters are directly proportional to 𝑅𝑒. Since this is the case, changing any of these variables will affect 𝑅𝑒. The

ollowing is a ranking of these parameters from largest to lowest by order of magnitude: 𝜇,𝛬, 𝛼3, 𝜇𝑏, 𝜖1, 𝛿, 𝑑1, 𝜒, 𝛾, 𝜂1, 𝜖2, 𝑑2, 𝛼1, 𝜂2 and
2. When the parameters associated with control measures (𝜒 and 𝜏) are increased, the effective reproduction number 𝑅𝑒 decreases.
hat means these parameters can be used as useful control interventions. Therefore, the spread of the disease can be stopped with
he right mix of sanitation and therapy. To the contrary, the findings suggest that exposure to contaminated surroundings (𝛼3) may
e more influential than human-to-human contacts (𝛼1 or 𝛼2) in accelerating disease replication. The finding aligns with the research
f other scholars, including Haque et al. in 2003 [43]. There are substantial implications for the public and policymakers alike from
hese findings. Access to basic sanitary services, such as potable water, toilets, and waste disposal, must be universally guaranteed.
he prevalence of various diseases, such as diarrhea-related illnesses, can be lowered dramatically with the help of such efforts.
10
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Table 3
Parameter value ranges of model (2) used as input for the LHS method.

Parameter Range Parameter Range

𝛬 [75, 125] 𝑑2 [0.45, 0.75]

𝛼1 [0.03, 0.05] 𝜂1 [0.03, 0.05]

𝛼2 [0.225, 0.375] 𝜂2 [0.0375, 0.0625]

𝛼3 [0.0375, 0.0625] 𝜖1 [22.5, 37.5]

𝛾 [0.15, 0.25] 𝜖2 [15, 25]

𝛿 [0.05355, 0.08925] 𝑟 [0.15, 0.25]

𝜇 [0.12525, 0.20875] 𝜏 [0.225, 0.375]

𝜇𝑏 [0.225, 0.375] 𝜃 [0.3, 0.5]

𝜒 [0.075, 0.125] 𝑓 [0.15, 0.25]

𝑑1 [0.1125, 0.1875]

Table 4
Parameters and their PRCC values.

Parameter PRCCs Parameter PRCCs

𝛬 +0.3325 𝑑2 −0.1354
𝛼1 +0.002554 𝜂1 −0.01102
𝛼2 +0.02667 𝜂2 −0.02208
𝛼3 +0.3422 𝜖1 +0.1522
𝛾 +0.03469 𝜖2 +0.04421
𝛿 +0.1884 𝑟 +0.2805
𝜇 −0.5893 𝜏 −0.09592
𝜇𝑏 −0.4807 𝜃 +0.05855
𝜒 −0.1486 𝑓 +0.04498
𝑑1 −0.01683

3.2. Global sensitivity analysis

Global sensitivity analysis is the practice of allocating the uncertainty in outcomes to the uncertainty associated with each data
oint across their whole spectrum of relevance. The global sensitivity analysis occurs when all inputs are changed simultaneously,
nd the sensitivity is evaluated across the whole range of each input a component as stated by [44]. We utilize a global sensitivity
nalysis to investigate at the model’s vulnerability to changes in a wider range of parameters. Parameter means are shown in Table 1,
nd the range values of these parameters are given in Table 3.

Since the effective reproductive number is parameter-dependent, we must emphasize that adjusting any of the model’s parameters
esults in a degree of uncertainty in our predictions. The partial rank correlation coefficients (PRCCs) between the effective
eproduction number 𝑅𝑒 and each parameter in the model (2) are shown in Fig. 2, and were computed using the method described
y [45]. Since the data regarding the distribution function was lacking, we made the choice for a uniform distribution for all
arameters instead. Using Latin Hypercube Sampling (LHS), we generated a thousand simulation iterations with different input
arameters. Partial Rank Correlation Coefficients were then calculated between 𝑅𝑒 and each model parameter in (2). The PRCC’s

findings are as presented in Table 4. It is essential to note that the parameters with the highest PRCC values significantly impact
the model 1. Table 4 shows that the parameter 𝜇 has the highest influence on the reproduction number 𝑅𝑒, followed in decreasing
order by the parameters 𝜇𝑏, 𝜖1, 𝛬, 𝑟, 𝛿, 𝛼3, 𝜒, 𝑑2 and 𝜏. The rest parameters: 𝜃, 𝑓 , 𝜂2, 𝛾, 𝛼2, 𝜂2, 𝑑1, 𝜂1 and 𝛼1 have less effect on 𝑅𝑒.

It can be observed that parameters such as 𝜇, 𝜇𝑏, 𝜒, 𝑑2, 𝜏, 𝜂2, 𝑑2 and 𝜂1 assist us in significantly reducing the number of infections.
As a result, the sensitivity analysis consistently supports our contention that the most effective way to combat infection is to increase
sanitation and treatment strategies. It is worth noting that the order of the most essential parameters for 𝑅𝑒 in the local sensitivity
analysis differs from that in the global sensitivity analysis. Thus, the global results are considered more robust than the local ones.

4. Optimal control problem and analysis

The previous model (2) is extended in the present section by including three time-dependent controls representing awareness
programs, treatment, and sanitation. In this case, the control interventions are regarded as time-dependent variables rather than
constant parameters, as presented previously, thus allowing optimal disease control. An optimal control problem is formulated from
the model presented in Eq. (2), with the parameters provided in Tables 1.

The success of awareness programs has been widely documented by researchers (e.g., [23,46]) in addressing various diseases.
Likewise, in the present work, an awareness program is considered one of the essential measures in controlling amebiasis. Thus,
the awareness program is modeled by a function 𝑢 (𝑡). Next, it is assumed that treating patients who suffer from amebiasis helps
11
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Fig. 2. Tornado plots of PRCC of parameters that influence model (2) generated using parameter values in Table 3. Parameters with 𝑃𝑅𝐶𝐶 > 0 and 𝑃𝑅𝐶𝐶 < 0
increase and decrease value of 𝑅𝑒, respectively.

minimize the spread of the disease. Untreated patients might develop severe associated symptoms. Therefore, infectious individuals
are treated at the rate 𝑢2(𝑡), and upon treatment, they may recover and join recovery class 𝑅. Furthermore, sanitation (including
water treatment and safe disposal of waste) is assumed to reduce environmental pathogen concentrations (see also [47]). Therefore,
sanitation effort is modeled by a control variable 𝑢3(𝑡). This control is expected to reduce the concentration of pathogens in the
environment (including water sources and foods). Based on the above descriptions, we obtain the following optimal control model:

𝑑𝑆
𝑑𝑡

= 𝛬 + 𝜙𝑅 − ((1 − 𝑢1)(𝛼1𝐼 + 𝛼2𝐶 + 𝛼3𝐵) + 𝜇)𝑆,

𝑑𝐸
𝑑𝑡

= (1 − 𝑢1)(𝛼1𝐼 + 𝛼2𝐶 + 𝛼3𝐵)𝑆 − (𝜇 + 𝛿)𝐸,

𝑑𝐼
𝑑𝑡

= 𝑓𝛿𝐸 + 𝜃𝐶 − (𝜇 + 𝑑1 + 𝜂1 + 𝛾 + (1 + 𝑢2)𝜏)𝐼,

𝑑𝐶
𝑑𝑡

= (1 − 𝑓 )𝛿𝐸 + 𝛾𝐼 − (𝜇 + 𝑑2 + 𝜃 + 𝜂2(1 + 𝑢2))𝐶,

𝑑𝑅
𝑑𝑡

= (𝜂1 + (1 + 𝑢2)𝜏)𝐼 + 𝜂2(1 + 𝑢2)𝐶 − (𝜇 + 𝜙)𝑅,

𝑑𝐵
𝑑𝑡

= 𝑟𝐵 + 𝜖1(1 − 𝑢1)𝐼 + 𝜖2(1 − 𝑢1)𝐶 − (𝜇𝑏 + 𝜒(1 + 𝑢3))𝐵,

(37)

with initial conditions 𝑆(0) > 0;𝐸(0) ≥ 0; 𝐼(0) ≥ 0;𝐶(0) ≥ 0;𝑅(0) ≥ 0;𝐵(0) ≥ 0. Setting the controls 𝑢1 = 𝑢2 = 𝑢3 = 0, one can obtain
a model with constant controls, which was studied in (2), where its stability analysis was well presented.

4.1. Optimal control analysis

It is necessary to modify these control measures to minimize the number of infectious individuals, carriers, and amebiasis
pathogens and the costs of administering these control strategies. Consideration must be given to the optimal control problem
with the objective functional of the form

𝐽 = min
𝑢 ∫

𝑡𝑓

0

(

𝐴1𝐼 + 𝐴2𝐶 + 𝐴3𝐵 +
3
∑

𝑖=1

𝐾𝑖
2
𝑢2𝑖

)

𝑑𝑡, (38)

where 𝑡𝑓 is the final time, and 𝐴𝑗 , 𝑗 = 1, 2, 3 are the weight constants associated with the number of infectious humans, carriers
humans, and pathogens concentration, whereas 𝐾𝑖, 𝑖 = 1, 2, 3 are the 𝑖th weights of control relative to its cost implications. The
quadratic terms 𝐾1 𝑢2, 𝐾2 𝑢2, and 𝐾3 𝑢2 represent the costs of control efforts on awareness programs, treatment, and sanitation
12
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respectively. [48,49] ague that quadratic objective are used many times since the cost implementing a control would be nonlinear,
so a simple nonlinear case should be taken. The costs can include funds needed for control implementation as well as the negative
financial impact on the environment.

Some researchers used the squares of the control variables to infer the seriousness of medication’s adverse effects. Excessive
mounts of medications such as interleukin are harmful to the body of humans, which is why the functional has quadratic
erms [50,51]. Besides, Gumel et al. 2006 [52] justify the use of a simple quadratic on controls in objective functional to avoid
‘bang–bang’’ or ‘‘singular’’ optimal control cases encountered when the objective functional is linear, which can be challenging to
andle. Bang–bang means that the optimal control only takes on values at the upper and lower bounds of the control set, and finding
he times at the switching from lower bound to upper bound (or vice versa) occurs is more complicated than the quadratic case
reated. Generally, quadratic objective functional is commonly used in optimal control problems because of its ability to trade-off
etween performance and control effort and its convexity, which allows for efficient numerical optimization to get a globally optimal
ontrol strategy.

Focus should be placed on minimizing the value of the objective functional 𝐽 . Therefore, the current task is to identify the
optimal control strategy under the criterion:

𝐽 (𝑢∗) = min 𝐽 (𝑢|𝑢 ∈ 𝑈 ),

where 𝑈 =
{

(𝑢1, 𝑢2, 𝑢3)|𝑢𝑖 is Lebesgue measurable with 0 ≤ 𝑈 ≤ 1 for 𝑡 ∈
[

0, 𝑡𝑓
]

, 𝑖 = 1, 2, 3
}

is the set of admissible controls. The
optimal control problem entails determining the existence and uniqueness of optimal controls and characterizing them.

4.2. The existence of the optimal controls

The current part explores the existence of optimal control framework (37) and Eq. (38) using a technique as presented in [53].
The following theorem is presented to aid the protocol of establishing existence stated.

Theorem 3. Consider an objective functional 𝐽 (𝑢), subject to the state Eq. (2) with non-negative initial solutions, then there exists an
optimal control 𝑢∗ and corresponding (𝑆,𝐸, 𝐼, 𝐶,𝑅, 𝐵), that minimizes 𝐽 (𝑢) over 𝑈 .

Proof. To employ the existing results by [54] [Theorem 4.1. page 68 - 70], first verify whether the following properties hold:

1. A set of controls with associated state variables is not empty.
2. Convexity and closure property holds in the set of controls.
3. Every right-hand side of the state system has the following properties: continuous, bounded above by the total of control and

state and may be expressed in terms of 𝑢 with time and state-varying coefficients.
4. The objective functional has a convex integrand 𝑝(𝑓, 𝑢).
5. An objective functional’s integrand must meet the following conditions:

𝑝 ≥ 𝑞1
(

|𝑢1|
2 + |𝑢2|

2 + |𝑢3|
2)

𝛽∗
2 − 𝑞2 for some constants 𝑞1, 𝑞2 > 0, and 𝛽∗ ≥ 1.

The study conducted by [53] (Theorem 9.2.1, p. 182) offers proof to support the existence of the state system, hence confirming
the realization of the first property. Based on the notion of a convex set, it could be concluded that the control set 𝑈 holds the
properties of convexity and closure. As a result, the second property is likewise true. Considering a linear state system with state
solutions in 𝑢𝑖, it is easily noticed that the resulting solutions are bounded. Therefore, it concludes that the right-hand side of the
system is also bounded and may be represented by a linear function with bounds.

Finally, there are 𝑞1, 𝑞2 ≥ 0 and 𝛽∗ ≥ 1 satisfying 𝐴1𝐼 +𝐴2𝐶 +𝐴3𝐵 +𝐾1𝑢21(𝑡) +𝐾2𝑢22(𝑡) +𝐾3𝑢23(𝑡) ≥ 𝑞1
(

|𝑢1|
2 + |𝑢2|

2 + |𝑢3|
2)

𝛽∗
2 − 𝑞2,

since the state variables are bounded. Hence, the existence of optimal control follows from the existence results by [54]. One can
also get more insights into the above proof by referring to the work by [20]. □

4.3. Characterization of the optimal controls

Pontryagin’s Maximum Principle [55] is used for demonstrating the optimal controls. The optimal control problem is converted
into a point-wise Hamiltonian (𝐻) minimization problem about 𝑢. The state variables are symbolized by 𝑥, the controls by 𝑈 , the
adjoint variables by 𝐿, and the differential of the 𝑖th state variable, denoted by 𝑓 . Our problem is, therefore, the inner product of
the right-hand sides of the state equations and adjoint variables (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿6) and the integrand of the objective functional.

he Hamiltonian can be expressed in its simplest form as

𝐻 = 𝐴1𝐼 + 𝐴2𝐶 + 𝐴3𝐵 +
3
∑ 𝐾𝑖 𝑢2𝑖 + 𝐿𝑓 (𝑡, 𝑥(𝑡), 𝑢𝑖(𝑡)). (39)
13
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In the expanded form, the Hamiltonian is:

𝐻 = 𝐴1𝐼 + 𝐴2𝐶 + 𝐴3𝐵 +
𝐾1
2
𝑢21 +

𝐾2
2
𝑢22 +

𝐾3
2
𝑢23

+ 𝐿1
(

𝛬 + 𝜙𝑅 − ((1 − 𝑢1)(𝛼1𝐼 + 𝛼2𝐶 + 𝛼3𝐵) + 𝜇)𝑆
)

+ 𝐿2
(

(1 − 𝑢1)(𝛼1𝐼 + 𝛼2𝐶 + 𝛼3𝐵)𝑆 − (𝜇 + 𝛿)𝐸
)

+ 𝐿3
(

𝑓𝛿𝐸 + 𝜃𝐶 − (𝜇 + 𝑑1 + 𝜂1 + 𝛾 + (1 + 𝑢2)𝜏𝐼)
)

+ 𝐿4
(

(1 − 𝑓 )𝛿𝐸 + 𝛾𝐼 − (𝜇 + 𝑑2 + 𝜃 + 𝜂2(1 + 𝑢2))𝐶
)

+ 𝐿5
(

(𝜂1 + (1 + 𝑢2)𝜏)𝐼 + 𝜂2(1 + 𝑢2)𝐶 − (𝜇 + 𝜙)𝑅
)

+ 𝐿6
(

𝑟𝐵 + 𝜖1(1 − 𝑢1)𝐼 + 𝜖2(1 − 𝑢1)𝐶 − (𝜇𝑏 + 𝜒(1 + 𝑢3))𝐵
)

.

(40)

Theorem 4. Given 𝑢∗𝑖 is the set of optimal control, and 𝑥∗ the corresponding set of solutions of the state system (2) that minimizes 𝐽 over
𝛺; then there exists adjoint variables 𝐿 such that

𝑑𝐿
𝑑𝑡

= − 𝜕𝐻
𝜕𝑥

, adjoint conditions and (41)

𝐿(𝑡𝑓 ) = 0, transversality conditions. Furthermore, (42)
𝜕𝐻
𝜕𝑢

= 0, at 𝑢∗, optimality conditions. (43)

Proof. Take the partial derivative of the Hamiltonian 𝐻 with respect to the state variables to get the adjoint system. That is to say

𝑑𝐿1
𝑑𝑡

=𝐿1
((

1 − 𝑢1
) (

𝛼1𝐼 + 𝛼2𝐶 + 𝛼3𝐵
)

+ 𝜇
)

− 𝐿2
(

1 − 𝑢1
) (

𝛼1𝐼 + 𝛼2𝐶 + 𝛼3𝐵
)

,

𝑑𝐿2
𝑑𝑡

=𝐿2 (𝜇 + 𝛿) − 𝐿3𝑓𝛿 − 𝐿4 (1 − 𝑓 ) 𝛿,

𝑑𝐿3
𝑑𝑡

= − 𝐴1 + 𝐿1
(

1 − 𝑢1
)

𝛼1𝑆 − 𝐿2
(

1 − 𝑢1
)

𝛼1𝑆 + 𝐿3
(

𝑑1 + 𝜂1 + 𝛾 + 𝜇 + 𝜏(1 + 𝑢2)
)

− 𝐿4𝛾 − 𝐿5(𝜂1 + 𝜏(𝑢2 + 1)) − 𝐿6𝜖1
(

1 − 𝑢1
)

,
𝑑𝐿4
𝑑𝑡

=𝐿4(𝑑2 + 𝜇 + 𝜃 + 𝜂2(𝑢2 + 1)) − 𝐿3𝜃 − 𝐴2 + 𝐿6𝜖2(𝑢1 − 1) − 𝐿5𝜂2(𝑢2 + 1)

− 𝐿1𝑆𝛼2(𝑢1 − 1) + 𝐿2𝑆𝛼2(𝑢1 − 1),
𝑑𝐿5
𝑑𝑡

= (𝜇 + 𝜙)𝐿5 − 𝜙𝐿1,

𝑑𝐿6
𝑑𝑡

=𝐿6(𝜇𝑏 − 𝑟 + 𝜒(𝑢3 + 1)) − 𝐴3 − 𝐿1𝑆𝛼3(𝑢1 − 1) + 𝐿2𝑆𝛼3(𝑢1 − 1).

(44)

ith transversality conditions (or final time conditions)

𝐿1(𝑇 ) = 0, 𝐿2(𝑇 ) = 0, 𝐿3(𝑇 ) = 0, 𝐿4(𝑇 ) = 0, 𝐿5(𝑇 ) = 0 and 𝐿6(𝑇 ) = 0.

he characterizations of the optimal controls 𝑢∗(𝑡) and corresponding 𝑢∗1(𝑡), 𝑢
∗
2(𝑡), 𝑢

∗
3(𝑡) that is, the optimality equations, are based on

he following conditions:

𝜕𝐻
𝜕𝑢1

= 𝜕𝐻
𝜕𝑢2

= 𝜕𝐻
𝜕𝑢3

= 0.

here
𝜕𝐻
𝜕𝑢1

= 𝐾1𝑢1(𝑡) − 𝐿6(𝐶𝜖2 + 𝐼𝜖1) + 𝐿1𝑆(𝐵𝛼3 + 𝐶𝛼2 + 𝐼𝛼1) − 𝐿2𝑆(𝐵𝛼3 + 𝐶𝛼2 + 𝐼𝛼1) = 0,

𝜕𝐻
𝜕𝑢2

= 𝐾2𝑢2(𝑡) + 𝐿5(𝜂2𝐶 + 𝜏𝐼) − 𝜂2𝐶𝐿4 − 𝜏𝐼𝐿3 = 0,

𝜕𝐻
𝜕𝑢3

= 𝐾3𝑢3(𝑡) − 𝜒𝐵𝐿6 = 0,

(45)

subject to the constraints 0 ≤ 𝑢1(𝑡) ≤ 𝑢1max, 0 ≤ 𝑢2(𝑡) ≤ 𝑢2max, 0 ≤ 𝑢3(𝑡) ≤ 𝑢3max. Hence, on solving system (45), we have:

𝑢∗1(𝑡) =
𝐶𝐿6𝜖2 + 𝐼𝐿6𝜖1 − 𝐵𝐿1𝑆𝛼3 + 𝐵𝐿2𝑆𝛼3 − 𝐶𝐿1𝑆𝛼2 + 𝐶𝐿2𝑆𝛼2 − 𝐼𝐿1𝑆𝛼1 + 𝐼𝐿2𝑆𝛼1

𝐾1
,

𝑢∗2(𝑡) =
𝐶𝐿4𝜂2 − 𝐶𝐿5𝜂2 + 𝐼𝐿3𝜏 − 𝐼𝐿5𝜏

𝐾2
,

𝑢∗(𝑡) =
𝜒𝐵𝐿6 .

(46)
14
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Set 𝑝∗ = 𝐶𝐿6𝜖2+𝐼𝐿6𝜖1−𝐵𝐿1𝑆𝛼3+𝐵𝐿2𝑆𝛼3−𝐶𝐿1𝑆𝛼2+𝐶𝐿2𝑆𝛼2−𝐼𝐿1𝑆𝛼1+𝐼𝐿2𝑆𝛼1
𝐾1

. Thus, using the bounds of the control 𝑢1(𝑡), its optimal control
s given by

𝑢∗1(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑝∗, if 0 ≤ 𝑝∗ ≤ 1,
0, if 𝑝∗ ≤ 0,
1, 𝑝∗ ≥ 1.

(47)

nstead, one might express optimal control as

𝑢∗1 = min
{

1,max
{

0, 𝑝∗
}

}

. (48)

lso,

𝑢∗2(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝐿4𝜂2−𝐶𝐿5𝜂2+𝐼𝐿3𝜏−𝐼𝐿5𝜏
𝐾2

, if 0 ≤ 𝐶𝐿4𝜂2−𝐶𝐿5𝜂2+𝐼𝐿3𝜏−𝐼𝐿5𝜏
𝐾2

≤ 1,

0, if 𝐶𝐿4𝜂2−𝐶𝐿5𝜂2+𝐼𝐿3𝜏−𝐼𝐿5𝜏
𝐾2

≤ 0,

1, if 𝐶𝐿4𝜂2−𝐶𝐿5𝜂2+𝐼𝐿3𝜏−𝐼𝐿5𝜏
𝐾2

≥ 1.

(49)

his can also be represented as

𝑢∗2 = min
{

1,max
{

0,
𝐶𝐿4𝜂2 − 𝐶𝐿5𝜂2 + 𝐼𝐿3𝜏 − 𝐼𝐿5𝜏

𝐾2

}

}

. (50)

Lastly,

𝑢∗3(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜒𝐵𝐿6
𝐾3

, 0 ≤ 𝜒𝐵𝐿6
𝐾3

≤ 1,

0, if 𝜒𝐵𝐿6
𝐾3

≤ 0,

1, if 𝜒𝐵𝐿6
𝐾3

≥ 1.

(51)

This can also be represented as

𝑢∗3 = min
{

1,max
{

0,
𝜒𝐵𝐿6
𝐾3

}

}

. □ (52)

5. Numerical results

In this section, numerical results for the state system (37) and adjoint system (44) are discussed. The fourth-order Runge–Kutta
scheme, also known as RK4, is used to solve the adjoint system due to its reliability compared to Euler’s method [30].

RK4 is a convergent numerical method, meaning that as the step size approaches zero, the approximation of the solution becomes
more accurate. However, there is a trade-off between computational efficiency and accuracy, as smaller step sizes require more
computation time. RK4 is conditionally stable, requiring a sufficiently small step size to remain stable. Smaller step sizes lead to
more excellent stability but at the cost of increased computation time. However, RK4 is more stable than lower-order methods like
the Euler method. RK4 is also known for its high accuracy, with the error being proportional to the fifth power of the step size.

Generally, the fourth-order Runge–Kutta scheme is a widely used numerical method for solving ODEs, thanks to its convergence,
stability, and accuracy. The method is particularly well-suited for solving ODEs with complex behavior but requires a careful choice
of step size to balance computational efficiency and accuracy.

The intent of carrying out the numerical solution in this part was to confirm the analytical results achieved in the preceding
sections. The scheme was implemented using MATLAB software. Plots of the numerical solution are utilized to evaluate the
effectiveness of control efforts on the target population.

5.1. Iterative method

We begin the iterative method by first considering a model without controls; all control variables are set equal to zero; since the
adjoint variables depend on the controls, they all also take the value zero. Using the forward-in time Euler’s method to Eq. (37), at
initial conditions 𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼(0) = 𝐼0, 𝐶(0) = 𝐶0, 𝑅(0) = 𝑅0, 𝐵(0) = 𝐵0, some solutions are given as demonstrated in the
plots. Also, a forward–backward sweep approach based on the RK4 method [55] was implemented to a set of differential equations
with initial conditions and the other with terminal conditions. Interested readers are referred to authors such as [26] for details.

5.2. Control scenarios

Several categories can be established with the discussed controls: those involving a single control, those with two controls, and
those with three controls. Thus, seven strategies can be implemented from the three controls considered. The following control
schedules were evaluated in order to determine their impact on the elimination of amebiasis:
15

Strategy A: Control with awareness programs only (𝑢1 ≠ 0, 𝑢2 = 0, 𝑢3 = 0)



Results in Control and Optimization 13 (2023) 100325S. Edward and G.E. Mpogolo

4
𝐴
h
v

5

(
F
1
s
t
m
a

5

a
s
a
f
s
b
t

Fig. 3. Effectiveness of awareness programs (𝑢1) to control amebiasis transmission.

Strategy B: Control with treatment only (𝑢1 = 0, 𝑢2 ≠ 0, 𝑢3 = 0)
Strategy C: Control with sanitation only (𝑢1 = 0, 𝑢2 = 0, 𝑢3 ≠ 0)
Strategy D: Control with awareness programs and treatment (𝑢1 ≠ 0, 𝑢2 ≠ 0, 𝑢3 = 0)
Strategy E: Control with awareness programs and sanitation (𝑢1 ≠ 0, 𝑢2 = 0, 𝑢3 ≠ 0)
Strategy F: Control with treatment and sanitation (𝑢1 = 0, 𝑢2 ≠ 0, 𝑢3 ≠ 0)
Strategy G: Control with all three controls: awareness programs, treatment, and sanitation (𝑢1 ≠ 0, 𝑢2 ≠ 0, 𝑢3 ≠ 0).

Further, for the simulation purpose of an optimal control problem, these initial values were considered: 𝑆(0) = 20, 𝐸(0) =
0, 𝐼(0) = 20, 𝐶(0) = 90, 𝑅(0) = 20 and 𝐵(0) = 500. Similarly, the coefficients considered for the state and control variables are
1 = 0.4, 𝐴2 = 0.8, 𝐴3 = 0.3, 𝐾1 = 0.1, 𝐾2 = 0.7 and 𝐾3 = 0.5. It should be noted that the weights used in the simulations are entirely
ypothetical, as they were intentionally selected to show the optimal control possibilities presented in this article. Likewise, other
alues used for simulation are 𝑢1 = 𝑢2 = 𝑢3 = 1 and 𝑇 = 30 days.

.2.1. Strategy A: Control with awareness programs only (𝑢1)
From Fig. 3, treatment control 𝑢2 and sanitation control 𝑢3 are set to zero; thus, the control 𝑢1 optimizes the objective functional

𝐽 ). It can be seen from Figs. 3(a)–(c) that employing this strategy tends to minimize the number of amebiasis infections greatly.
or instance, Fig. 3(a) shows that the number of amebiasis cases can be reduced by using this approach strictly for between 5 and
0 days. From Fig. 3(b), the number of carriers approaches zero on the fifth day. Likewise, it can seen from Fig. 3(c) that applying a
imilar option will clear the pathogens population on the same fifth day. The results indicate that an awareness program is pivotal
o eradicating the disease from the community. The control profile from Fig. 3(d) shows that one requires the control 𝑢1 be kept at
aximum (fullest) for the duration of 28.77 days and becomes zero at 30 days to attain the results in Fig. 3(a)–(c) while both 𝑢2

nd 𝑢3 are set to zero. This result accords with the results of research by [30,56].

.2.2. Strategy B: Control with treatment only (𝑢2)
From Fig. 4, awareness programs control (𝑢1) and sanitation control (𝑢3) are set to zero, while treatment control (𝑢2) is kept

ctive and is employed to optimize the objective functional (𝐽 ). As a result, we simulated the optimality system with treatment
erving as the only possible intervention. Fig. 4(a) illustrates the significant reduction in infectious populations at a particular time
fter adopting this approach. From Fig. 4(b), however, one can note that there is a negligible decrease in the number of carriers
ollowing the application of treatment of carriers. With Fig. 4(c), the pathogen populations are declining after applying the same
trategy. One can observe that treatment is vital in diminishing the number of amebiasis cases, even though it is insufficient to
ring this disease to an end when considered alone (see also in [30,57]). Thus necessitating other options to work with treatment
16

o contain this disease.
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Fig. 4. Impacts of treatment on Amebiasis transmission dynamics.

The control profile from Fig. 4(d) shows that one requires the control 𝑢2 be kept at maximum (fullest) for almost the entire
control duration of 30 days to attain the results in Fig. 4(a)–(c) while both 𝑢1 and 𝑢3 are set to zero.

5.2.3. Strategy C: Control with sanitation only (𝑢3)
From Fig. 5, awareness programs control (𝑢1) and treatment control (𝑢2) are set to zero, while sanitation control (𝑢3) is activated,

which is then employed to optimize the objective functional (𝐽 ). As a result, it can be seen from Fig. 5(a)–(b) that sanitation
control has no direct impact on either the number of infectious or carrier populations, respectively. This shows that initiatives like
water chlorination and sewage treatment are not intended to eliminate pathogens within diseased people (𝐼 and 𝐶). Conversely,
Fig. 5(c) reveals that sanitation lowers the environmental abundance of amebiasis pathogens. Sanitation practices, including water
chlorination, good sewage disposal, and high levels of personal hygiene, all work to limit the spread of amebiasis, which may have
sped up this decline. Similarly, the results demonstrate that using this approach alone to combat the disease is ineffective, particularly
in areas where it is endemic, necessitating additional strategies to complement sanitation. The control profile from Fig. 5(d) shows
that one requires the control 𝑢3 be kept at maximum (fullest) for almost the entire control duration of 30 days to attain the results
in Fig. 5(a)–(c) while both 𝑢1 and 𝑢2 are set to zero. A similar conclusion was also seen in [30,57].

5.2.4. Strategy D: Control with awareness campaigns and treatment only (𝑢1&𝑢2)
Fig. 6(a) shows that with the application of strategy D, there is a considerable decrease in the number of infectious individuals.

Likewise, Fig. 6(b) shows that the carrier population decreases significantly when the same strategy is applied. Note from Fig. 6(c)
that the implementation of this strategy also affected the pathogens population. This is because, with this strategy, the number of
pathogens concentration tends to reduce substantially. It is interesting to see that the application of this strategy is sufficient to
contain the epidemic earlier than 10 days. The control profile from Fig. 6(d) shows that one requires the control 𝑢1 and 𝑢2 be kept
at maximum (fullest) for 28.77 days and 3.4 days, respectively. Later, the same control profile drops to zero in 25 and 30 days in
the same order to attain the results in Fig. 6(a)–(c) while the control 𝑢3 is set to zero. This finding also agrees with similar works
by [30,58].

5.2.5. Strategy E: Control with sanitation and awareness programs only (𝑢1&𝑢3)
It can be seen from Fig. 7(a)–(c) that with the application of strategy E, there is a dramatic decrease in the number of the

infectious, carrier, and amebiasis pathogens population at a given time. The disease-free state is attained at the 10th day, see
Figs. 7(a). Also, the disease-free state for carriers and pathogens is attained earlier than five days (Figs. 7(b-c)). This implies that
17

sanitation and awareness programs can better control amebiasis infections. A similar conclusion was also observed in [30,59,60].
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Fig. 5. Impacts of sanitation on amebiasis transmission dynamics.

Fig. 6. Impacts of awareness programs and treatment on amebiasis transmission dynamics.

.2.6. Strategy F: Control with treatment and sanitation only (𝑢2&𝑢3)
It can be seen from Fig. 8(a,c) that with the application of strategy F, there is a decrease in the number of infectious and pathogens

opulations at a given time. Additionally, it is seen from Fig. 8(b) that this strategy has a negligible effect on the carriers. Total
18
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Fig. 7. Impacts of sanitation and awareness program on amebiasis transmission dynamics.

learing of amebiasis infections cannot be witnessed in Fig. 8(a,c). This implies that sanitation and treatment alone are insufficient
o eliminate the disease from the community; other combinations are needed to bring the disease to an end. This finding coincides
ith those by [30,57].

The control profile from Fig. 8(d) shows that one requires the control 𝑢2 and 𝑢3 be kept at maximum (fullest) for almost the
entire control duration of 30 days to attain the results in Fig. 5(a)–(c) while 𝑢1 is set to zero.

5.2.7. Strategy G: Control with treatment, sanitation and awareness programs (𝑢1, 𝑢2&𝑢3)
Fig. 9(a)–(b) shows that the number of infectious and carrier populations at any given period significantly decreases with the

implementation of strategy G. Similarly, from Fig. 9(c), it is noticeable that utilizing this approach works best for eliminating
amebiasis germs. This finding is more optimistic than when the same controls were considered separately or combined with another
strategy, except for treatment and awareness programs, which produce almost identical results. This result highlights the advantages
of using multiple controls to eliminate amebiasis infections.

The optimal control profile for attaining the results presented under this strategy is shown in Fig. 9(d), where the control 𝑢1
remains constant for about 28.77 days and becomes zero at 30 days, while the control 𝑢2 remain constant for about 3.49 days and
becomes zero at 23.32 days, whereas, the control 𝑢3 remain constant for about 4.59 days and becomes zero at 14.93 days.

The results show that to eliminate this epidemic from the community, one should continually combine treatment, sanitation
efforts, and awareness programs in the stated schedule. Medical doses should be kept at maximum initially and be reduced gradually
as time goes on to reduce costs and associated side effects. The same applies to sanitation programs, which are applied maximum
initially and drop gradually with time. Awareness programs should be maintained high for almost the time control period. A similar
conclusion was also seen in [30].

6. Conclusions

In this work, deterministic mathematical models were developed to account for direct and indirect amebiasis transmission.
The first model includes two measures: sanitation and treatment. The effective reproduction number was determined using the
next-generation matrix approach, and the stability of the equilibria was verified. The Disease-Free Equilibrium (DFE) has been
demonstrated to be both locally and globally stable if 𝑅𝑒 < 1 and unstable otherwise. A sensitivity analysis determined which disease
dynamics parameters are crucial and may necessitate additional control measures. It was found that the parameters 𝜇,𝛬, 𝛼3, 𝜇𝑏, and
𝜖1 a are much more sensitive to the effective reproduction number; thus, even a small change in these parameters could significantly
impact disease dynamics. It was realized that investing more in implementing sanitation and treatment control measures reduces
19

amebiasis incidence. Indirect transmission contributes to a more significant number of infections than direct transmission. Likewise,
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Fig. 8. Impacts of treatment and sanitation on amebiasis transmission dynamics.

Fig. 9. Impacts of awareness programs, treatment, and sanitation on amebiasis transmission dynamics.
20
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an optimal control problem for amebiasis was formulated. The model has incorporated three optimal controls: awareness programs,
treatment, and sanitation. The optimal control model was analyzed via Pontryagin’s maximum principle. Numerical simulation
was carried out for an optimal control problem to verify analytical results. The findings show that the optimal control strategy
combines three controls: awareness programs, treatment, and sanitation. However, a single strategy might be opted for during an
economic crisis. In that case, a strategy that considers only awareness programs might be viable to control the epidemic. The authors
acknowledge the models presented in the study have limitations and suggest that future work could extend the model to include
an age-structured population. This would provide a more realistic representation of the disease’s dynamics, as infections may vary
among age groups. Moreover, a cost-effectiveness analysis could be done to figure out the most cost-effective strategy. However,
the study’s findings have important implications for policymakers and public health officials who seek to design effective strategies
for controlling amebiasis in the community. The study provides valuable insights into the relative effectiveness of different control
measures and can help guide decisions regarding resource allocation for disease control.
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