
Citation: Migayo, D.M.; Kaijage, S.;

Swetala, S.; Nyambo, D.G.

Automated Optimization-Based

Deep Learning Models for Image

Classification Tasks. Computers 2023,

12, 174. https://doi.org/10.3390/

computers12090174

Academic Editors: KC Santosh,

Ayush Goyal, Djamila Aouada,

Aaisha Makkar, Yao-Yi Chiang,

Satish Kumar Singh, Alejandro

Rodríguez-González and

Paolo Bellavista

Received: 19 May 2023

Revised: 7 August 2023

Accepted: 10 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Automated Optimization-Based Deep Learning Models for
Image Classification Tasks
Daudi Mashauri Migayo 1,2,* , Shubi Kaijage 1 , Stephen Swetala 3 and Devotha G. Nyambo 1

1 School of Computational and Communicational Science and Engineering, The Nelson Mandela African
Institution of Science and Technology, Arusha 23311, Tanzania; shubi.kaijage@nm-aist.ac.tz (S.K.);
devotha.nyambo@nm-aist.ac.tz (D.G.N.)

2 Department of Business Administration, Tanzania Institute of Accountancy (TIA),
Dar es Salaam 15108, Tanzania

3 Department of Orthopedic and Trauma Surgery, Bugando Medical Centre, Mwanza 33102, Tanzania;
stephenswetala@gmail.com

* Correspondence: migayod@nm-aist.ac.tz; Tel.: +255-786-073-629

Abstract: Applying deep learning models requires design and optimization when solving multi-
faceted artificial intelligence tasks. Optimization relies on human expertise and is achieved only
with great exertion. The current literature concentrates on automating design; optimization needs
more attention. Similarly, most existing optimization libraries focus on other machine learning
tasks rather than image classification. For this reason, an automated optimization scheme of deep
learning models for image classification tasks is proposed in this paper. A sequential-model-based
optimization algorithm was used to implement the proposed method. Four deep learning models, a
transformer-based model, and standard datasets for image classification challenges were employed in
the experiments. Through empirical evaluations, this paper demonstrates that the proposed scheme
improves the performance of deep learning models. Specifically, for a Virtual Geometry Group
(VGG-16), accuracy was heightened from 0.937 to 0.983, signifying a 73% relative error rate drop
within an hour of automated optimization. Similarly, training-related parameter values are proposed
to improve the performance of deep learning models. The scheme can be extended to automate the
optimization of transformer-based models. The insights from this study may assist efforts to provide
full access to the building and optimization of DL models, even for amateurs.

Keywords: deep learning; automated optimization; automated machine learning; parameter
optimization; sequential-model-based optimization; image classification

1. Introduction

Artificial intelligence (AI) generally involves modeling intelligent behavior using a
computer program with limited human interference [1]. AI manifests through numerous
applications, such as autonomous driving, natural language processing, intelligent infor-
mation retrieval, expert consulting systems, theorem proving systems, robotics, automatic
programming, combinatorial and scheduling systems, and perception problems [2,3].

Machine learning (ML) is considered a subfield of AI [4]. However, some believe that
only the intelligent part of ML should be regarded as a subset of AI [5]. Either way, both
kinds of literature converge on the notion that in ML a computational algorithm is built
that can be applied to make decisions or estimates based on training data, without being
explicitly programmed to perform the task [4,6].

An ML model learns from experience for a given task if its performance towards the
task improves with experience [7]. Machine learning models are primarily classified into
four groups: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning [8]. Deep learning leads to other machine learning tools in general
imaging and computer vision [9].
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Deep learning (DL) refers to techniques that build on artificial neural networks in
which multiple network layers are added to increase the levels of abstraction and per-
formance [10]. For better generalizability, a good DL model is obtained through several
processes: pre-processing of data, feature engineering, model generation, and model evalu-
ation [11]. Model generation includes the design of DL models and optimization during
training. Model generation is turned into an optimization process for state-of-the-art
(SOTA) DL models with transfer learning.

The optimization process can either involve hyperparameter optimization (HPO)
or architecture optimization (AO) [11]. The former focuses on tuning training-related
parameters, for example, the batch size, learning rate, and the number of training itera-
tions. The latter deals with model-related parameters, for example, the number of hidden
layers, filter size, and the number of neurons per layer. Popular optimization methods
include grid and random search [12,13], Bayesian optimization [14,15], and gradient-based
optimization [16–19].

Standard DL models require determining both training- and model-related parameters
before training. The model’s performance can be affected considerably by the choice of
these parameters, yet finding good values is notably tough [20]. The problem is exacerbated
by the fact that some parameter values are integers (e.g., batch size), others are floating-
point (e.g., learning rate), and others are categorical (e.g., optimizer). During training,
landing on the veracious set of parameter values for better generalization remains an
indistinct procedure, hampering the replication of ML experiments.

Luckily, there has been growing interest in automating the ML pipeline, i.e., automated
machine learning (AutoML), to free data scientists from burdensome tasks. Google intro-
duced publicly shared Cloud AutoML (https://cloud.google.com/automl/, accessed on
4 November 2022) systems, and others have submitted open-source optimization libraries,
i.e., Hyperopt [21], Skopt [22], SMAC [23], and KerasTuner (https://keras.io/keras_tuner/,
accessed on 29 June 2023). Similarly, the majority of recent literature on AutoML for DL
models concentrates on automating the design of DL models through the neural archi-
tecture search (NAS) process [24–28]. However, works on automating the optimization
process after obtaining the candidate architecture through NAS is still insufficient.

To date, an insufficient number of works of literature on the automated optimization
of DL models have been identified. Similarly, building high-quality DL models through
the optimization process can take time for non-experts. Therefore, existing difficulties
motivated a desire to seek improved approaches for model optimization. Deliverables from
such systems may be applied to join efforts to free data scientists from the burdensome
optimization task.

For that reason, this empirical work proposes to advance the understanding of this
growing area of research by introducing automated optimization of DL models for com-
puter vision, specifically image classification tasks. Four DL models, each presenting a
different architecture and prominent datasets, were employed during the implementation
of the proposed solution. The proposed solution experimented with a transformer-based
model to test its applicability to vision transformer models.

Data scientists, DL practitioners, experts, and non-experts working on image clas-
sification tasks can use the proposed solution without geographical limitations. A data
scientist has control over the optimization attempts in the proposed solution, as opposed
to using brute force and exhaustive searches. The main contributions of this paper can be
summarized as follows:

• Through a series of empirical tests, the association and impact on the performance of
two main training-related parameters, batch size and learning rate, is explored;

• A framework for automated optimization of the DL model for image classification
tasks is presented;

• An empirical demonstration showing that the proposed framework improves the
performance of DL models is presented;

https://cloud.google.com/automl/
https://keras.io/keras_tuner/
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• A set of training-related parameter values for better performance of DL models for
further extensive empirical evaluations is recommended.

The remainder of this paper is structured as follows: Section 2 concerns materials and
methods. Section 3 is dedicated to presenting results; subsequently, Section 4 discusses
results and findings. Section 5 outlines a conclusion and some highlights of what to expect
in future works.

2. Materials and Methods

This section summarizes the experimental setup, presents an overview of selected
deep learning models, parameters to be used during automated optimization, datasets,
and performance measures for empirical evaluation; an overview of the problem at hand is
provided, proceeded by an optimization algorithm and the proposed framework.

2.1. Experimental Setup

Three sets of experiments were conducted in this study: the first to assess the associa-
tion of learning rate and batch size; the second to assess the impact of optimizers; and the
third to demonstrate the proposed solution. The first set involved twenty tests, the second
set involved three, and the third involved three tests for each of the selected DL models.
A total of 104 experimental runs were conducted.

All experiments were coded using Python and run using an online Jupyter Notebook
executed on the Google Colab cloud computing on a TensorFlow framework. A graphics
processing unit (GPU) offered on the Google platform was utilized to expedite the training
process. At the beginning of each training session, Google offers up to 12.7 GB of RAM,
15 GB of GPU, and 78.2 GB of disk space that are dynamically assigned and utilized.

2.2. Deep Learning Models

Four of the top state-of-the-art deep convolution neural network (D-CNN) models,
standard for image classification tasks, were selected in this work. A very deep convolu-
tional network for large-scale image recognition (VGG-16) is beneficial as it generalizes well
on other databases, apart from the ImageNet database, while achieving SOTA results [29].
GoogleLeNet or Inception uses fewer computational resources and few parameters while
achieving high SOTA results [30]. In this paper, we considered Inception version V3.

Likewise, from the clan of Residual Network (ResNet), ResNet50 was selected as
it presents a novel architecture, skipping connections that go deeper by up to 152 lay-
ers (8 times deeper than VGG-19) but still maintaining low complexity [31]. The final
nomination was the EfficientNet, which introduced a novel model scaling method called
compound scaling [32]. The proposed approach broke the mold of its predecessors, which
previously used the conventional system of stacking many layers to scale up the model.
EfficientNetB0 was considered in these experiments.

The selected four DL models are winners of the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) at different timeframes. In the ILSVRC 2014, VGG-16 was ranked
second, and Inception was first. Likewise, ResNet50 was ranked first in the ILSVCR 2015.
Lastly, EfficientNet was a winner in the ILSVRC 2019.

Each of the selected models presents a unique architecture that generalizes well on a
variety of datasets (VGG-16), minimizes computational resources (Inception), gets deeper
while reducing complexity (ResNet50), and uniformly scales up (EfficientNet). Diverse
architectures in the selected models lays a foundation for most variants of D-CNN.

A transformer-based model by Dosovitskiy et al. [33] was used to test the applicability
of the proposed approach to vision transformers (ViT). The model contains multiple trans-
former blocks with a multi-head attention layer applied to the sequence of image patches.
The final output of each transformer block is flattened to be used as the representation of
image input to the classifier head. The classifier head uses a softmax activation to produce
the output probability of each class.
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In this paper, deep learning models based on ConvNets were mainly considered in
the experiments. However, in recent years, the popularity of transformer-based models
for computer vision applications has been growing. Yet recent ConvNets can be as robust
and reliable or, in some cases, even more so than transformers [34]. Therefore, the experi-
ments and results presented in this paper primarily concentrate on ConvNet-based deep
learning models; however, at the same time, the proposed approach was evaluated with a
transformer-based model.

2.3. Parameters

Four parameters were used in performing automated optimization during the empiri-
cal work: the number of trainable hidden layers, learning rate, batch size, and optimizer.
Nevertheless, the number of training iterations (epoch) remained the same because early
stopping was used in the selected DL models. Early stopping monitored improvements in
the validation loss with patience set to 10 and mode set to min, as we seek to minimize loss
when validation accuracy improves, restoring best model weights.

2.4. Datasets and Performance Measures

Standard datasets for image classification tasks used across research and hackathons
were selected [35,36]. The ImageNet (https://image-net.org/download, accessed on
4 November 2022) is the largest dataset for image classification and localization. In addition,
we selected Fashion-MNIST [37], Stanford Cars [38], and the Google Cats and Dogs dataset
(https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip, accessed on
4 November 2022). All datasets are publicly available and can be freely accessed for various
image classification challenges.

With a balanced dataset used to evaluate the proposed approach, the performance
metric used in this work is accuracy. Accuracy measures the probability of an image being
classified as positive or negative. With initial accuracy Acci and final accuracy Accf, the
relative error εr drop can be calculated as:

εr =
Accf −Acci

100−Acci
× 100% (1)

Evaluation metrics like precision, recall, and confusion matrix may be employed when
the proposed approach uses imbalanced datasets. However, a data scientist must explicitly
define the evaluation metric before optimizing.

2.5. Problem Definition

This work addresses the following problem. Given:

• A set of deep learning modelsΜ(1),. . .,Μ(t), with t being the number of deep learning
candidate models for a CV task T;

• A number m of datasets asT(1),. . .,T(m);
• A set of n parameters with domains Θ1,. . ., Θn;
• ModelΜ’s configuration space as a product of parameter domains given as Θ = Θ1 ×

. . . × Θn;
• For each of the selected modelΜ on datasetT during task T, a number of K sets have

a pair of empirical performance metrics yi with parameter settings θi as 〈yi, θi〉Ki=1.

Our goal is to automate the process of determining, for the selected model on a given
dataset for a particular image classification task, which parameter values are to be applied
for the expected better performance of a model during the optimization process.

2.6. Optimization Algorithm

We employed a sequential-model-based optimization algorithm to implement the
proposed scheme. More specifically, we used Bayesian optimization (BO), a popular SMB-

https://image-net.org/download
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
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based hyperparameter optimization method [14,15]. With an evaluation function f and
acquisition function S, SMBO can be articulated in Algorithm 1 [14].

Algorithm 1: Sequential-Model-Based Optimization

Input: f, Θ, S,Μ
T← INITSAMPLES (f, Θ)
for i in [1, 2, . . . , t] do
p(y|θ,T)← FITMODEL (Μ,T)
θi ← argmaxθ∈ΘS(θ, p(y|θ,T))
yi ← f (θi)
T←T ∪ (yi, θi)
end for

After tuning the probabilistic model Μ to fit on T, function S selects subsequent
promising neural architecture fromΜ. A balance between exploring new architectures from
M and exploiting architectures already identified to have auspicious values is defined by S.
Function f evaluates the selected neural architecture after training and validation. The new
pair of evaluation results (yi, θi) is appended onT.

2.7. Automated Optimization Framework

The proposed framework of the automated optimization scheme can be summarized
in Figure 1. The optimization scheme accepts a DL model, classification task, and control
variable to exploit the configuration space. Finally, it yields the best-performing DL model,
associate parameters, and evaluation metrics.
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At first, a data scientist specifies a DL modelΜ, datasetT, and a maximum number
of optimizations attempt� for a given image classification task. The algorithm compiles a
model after preprocessing the data onT using default parameters θ1. Afterwards, the algo-
rithm fitsΜ onT and records the initial performance measure y1 using θ1. A comparison
between y1 and new performance values will be made during the optimization process.

The algorithm then initializes automated optimization ofΜ onT using configuration
space Θ. Parameters θi are selected iteratively to compile and fitΜ onTwhile recording
new performance yi. IfΜ improves as yi is compared with y1, the algorithm updates the
performance measure and corresponding parameter value (yi, θi) on savingΜ. Otherwise,
the algorithm retrains after unfreezing the top layers ofΜ and reducing the learning rate.
In this paper, unfreezing happened layer by layer, since the training process of the internal
layers of DL differs significantly [39].

In both cases, if there are no improvements, parameters θi and compiledΜ are dis-
carded upon selecting subsequent parameter values for the next optimization attempt.
The counter for optimization attempts, t, will be incremented. The process repeats with
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� controlling the exploration of θi from Θ when exploiting selected parameters. The
automated optimization can be summarized in Algorithm 2.

Algorithm 2: Automated Optimization of DL Models

Input: Μ,T,�
Output: bestΜ, final yi, and values θi
Method: the algorithm works as follows.
1: InitializeΜ onTwith θ1
2 : y1 ← f (θ1 )
3 : record (yi, θi )
4 : for θi in Θ do
5 : yi ← f (θi )
6 : if yi improves, update (yi, θi )
7: else unfreezeΜ
8 : yi ← f (θi )
9 : if yi improves, update (yi, θi )
10 : else discard θi, increment t
11: end if
12: end if
13 : while t <�, reiterate

Most of the existing approaches optimize models for ML tasks other than computer
vision. Optimizing a model for a computer vision task is often a resource-intensive task.
The proposed method stands out from the existing literature for three reasons. First, it
automates the optimization process of models for computer vision, a solution currently
insufficiently addressed in the current literature. Second, it can be configured and supports
state-of-the-art deep learning models with transfer learning for any image classification task.
Third, a user controls the optimization process and may limit the utilization of resources,
as opposed to using brute force and exhaustive searches.

2.8. Implementation

Transfer learning was employed on the selected models with pre-computed weights on
ImageNet. The Fashion-MNIST and Stanford Cars datasets were used to initially examine
the association between batch sizes and learning rates during training with a generic
model. The Stanford Cars dataset encompasses 16,185 images and 196 car classes. Fashion-
MNIST holds 70,000 28 × 28 grayscale fashion images from 10 categories, divided into
60,000 training and 10,000 test examples. The proposed automated optimization approach
was implemented and evaluated on the Stanford Cars and the Cats and Dogs datasets with
1500 color images for each class, split into 2000 images for training and 1000 for validation.

Three optimizers were used: RMSProp, SGD with momentum, and Adam. Batch size
increases by 2, starting with 8 through to 128. The number of epochs was fixed to 100 with
the early stopping monitoring validation loss, with patience set to 10, and a 0.5 dropout
rate to prevent overfitting, and saving only the best model.

3. Results

This section presents the result of our empirical work before, during, and after building
an automated optimization-based deep learning model for computer vision.

3.1. Hyperparameter Association

At first, a series of empirical tests were conducted to explore the relationship between
batch size and learning rate and their impact on the model’s performance. For each of
the selected DL models, a pair of batch size and learning rate was iteratively determined
while observing accuracy and loss during training and validation. Table 1 presents the
experimental data for ResNet50. Epoch represents the number of iterations the activity
training terminated using the early stopping criteria. Likewise, the time in minutes shows
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the corresponding duration of training. Appendix A provides supplementary experimental
data. Table A1 gives experimental data for a VGG-16; Table A2 gives experimental data for
Inception; Table A3 gives experimental data for EfficientNet.

Table 1. Training data for ResNet50.

Batch Size Learning Rate Loss Accuracy Validation Loss Validation Accuracy Epoch Time (min)

8 0.1 0.8353 0.4827 0.8761 0.4929 11 7
16 0.1 0.7928 0.5555 0.787 0.5167 49 30
32 0.1 0.8922 0.4937 0.9006 0.5151 18 11
64 0.1 0.9066 0.4639 1.0116 0.4712 29 20

128 0.1 1.0363 0.4645 0.7907 0.4675 28 18
8 0.01 0.2277 0.8506 0.3207 0.8331 64 31
16 0.01 0.0214 0.9198 0.114 0.9141 25 15
32 0.01 0.2312 0.8553 0.5977 0.7737 40 22
64 0.01 0.0172 0.9277 0.0727 0.926 50 29

128 0.01 0.0022 0.9304 0.0603 0.9316 26 14
8 0.001 0.0239 0.9292 0.0686 0.9371 35 13
16 0.001 0.0584 0.9284 0.0827 0.9376 20 12
32 0.001 0.0079 0.9442 0.0927 0.9403 15 9
64 0.001 0.0008 0.9514 0.0786 0.9404 12 7

128 0.001 0.005 0.9504 0.0616 0.9383 16 6
8 0.0001 0.6079 0.9395 0.0615 0.9424 63 45
16 0.0001 0.027 0.9506 0.0865 0.9369 19 12
32 0.0001 0.0974 0.9439 0.1006 0.9427 78 46
64 0.0001 0.0409 0.9469 0.1046 0.9458 11 6

128 0.0001 0.0569 0.9534 0.105 0.9539 11 6

The data in Table 2 present the results that indicate a positive association between
batch size and learning rate, with the best performance obtained when high rates are used
with large mini batches and the inverse is true.

Table 2. Association of hyperparameters during training and optimization.

DL Model Batch Size Learning Rate Validation Accuracy Epoch

ResNet50
128 0.01 98.7% 26

8 0.01 88.7% 66

VGG-16
128 0.01 92.6% 16

8 0.01 89.5% 32

Inception 128 0.01 95.4% 11
8 0.01 83.4% 18

EfficientNetB0
128 0.01 95.8% 14

8 0.01 60.1% 21

The experimental evidence in Figure 2 reveals that a DL model diverges following
training with a low rate and a large mini batch (a). Contrastingly, a clear benefit of using
low rates with small mini batches can be witnessed as the model converges to a local
optimal solution (b). Nevertheless, the latter’s training time is higher than the former.

If we turn to the training losses, a combination of low rates and a small mini batch
promises convergence in reducing training and validation loss, as shown in Figure 2d. Con-
versely, low rates and a large mini batch guarantee training and validation loss divergence,
as seen in Figure 2c.

The data in Figure 2 shows that model accuracy and loss improve positively when the
model is trained using low rates and a small mini batch. Divergence in model accuracy
and loss is observed when the model is trained using low rates and a high mini batch, or
the inverse. The following subsection concerns performance gains obtained after applying
the proposed automated framework during the training and optimization of DL models.
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diverges with a minibatch of 128; (d) model converges with minibatch of 8.

3.2. Performance Evaluation

Utilizing the proposed framework resulted in performance improvements of selected
DL models after training and optimization. As can be seen from the data in Table 3, the
error rate was reduced by improving accuracies for the selected DL model. The initial
accuracy was obtained through the default training parameters of batch size 32 and a
learning rate of 0.001, as suggested by existing literature. The automated optimization
process achieved final accuracy after a series of empirical trials.

Table 3. Post-automated optimization performance evaluation.

DL Model Initial
Accuracy

Final
Accuracy

Training
Time Batch Size Learning

Rate

VGG-16 [29] 0.9370 0.9830 01:00:58 32 1 × 10−5

Inception [30] 0.9870 0.9920 00:41:25 16 1 × 10−5

ResNet50 [31] 0.9820 - 03:17:26 32 1 × 10−3

EfficientNet [32] 0.9830 0.9890 02:41:08 16 1 × 10−5

Closer inspection of Table 3 reveals an upsurge of accuracy from 0.9370 to 0.9830
for a VGG-16, signifying a 73.02% relative error drop from 0.063 to 0.017 as calculated
using Equation (1) in approximately one hour. Similarly, there was a 37.29% relative
error reduction for EfficientNet as the accuracy rose from 0.9830 to 0.9890 after utilizing
the proposed framework. Contrary to expectations, no performance improvement was
observed on ResNet50, as the initial accuracy could not be surpassed. These results indicate
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that the proposed framework can automate the optimization process of DL models and,
indeed, improve performance by significant proportions.

Table 3 evaluates the optimization process using the proposed scheme regarding
accuracy and training time. Accuracy represents model performance after the automated
optimization process as an evaluation criterion. Training time means the consumption of
resources during the automated optimization process.

3.3. Proposed Parameter Values

Several pairs of training-related parameters for better DL model performance were
observed through our empirical tests. We recommend these values during the training of
DL models for further extensive empirical evaluations. Generally, learning rates of 0.01,
0.001, and 0.0001 work well with mini batches 64, 32, and 16, respectively. However, the
learning rate should be reduced if the top layers of a DL model are unfrozen to avoid
wrecking precomputed weights. Table 4 summarizes these parameter values.

Table 4. A summary of proposed training-related parameters for DL models.

Batch Size Learning Rate Learning Rate (Unfrozen)

16 1 × 10−4 1 × 10−5

32 1 × 10−3 1 × 10−4

64 1 × 10−2 1 × 10−3

These values can be adopted as default parameters while training DL for image
classification tasks. Based on our empirical evaluations, these values guarantee the optimal
performance of DL models. Data scientists and DL practitioners may select and apply a
pair of proposed values when building a baseline model. Afterward, the optimization
process to surpass a baseline model may be initiated by utilizing automated tools like the
proposed scheme.

3.4. Optimizers

Empirical tests were conducted to assess the optimizers’ impact on accuracy and loss.
A default learning rate of 0.001 and a batch size of 32 were selected during training with
varying optimizers. Three optimizers were used: Adam, SGD, and RMSprop. Table 5
provides a summary of the outcomes of these experiments.

Table 5. The impact of optimizers on accuracy and loss.

DL Model Optimizer Loss Accuracy Validation Loss Validation Accuracy Epoch Time (min)

ResNet50
Adam 0.3317 0.8905 0.3356 0.8720 27 19
SGD 0.0084 0.9975 0.0641 0.9810 38 22

RMSprop 0.8384 0.5845 0.8203 0.4560 23 15

VGG-16
Adam 0.2586 0.8855 0.1723 0.9360 36 21
SGD 0.3987 0.8140 0.2496 0.9020 63 19

RMSprop 0.3057 0.8685 0.1897 0.9290 25 12

Inception
Adam 0.1015 0.9590 0.1101 0.9570 38 11
SGD 0.1064 0.9540 0.0975 0.9620 21 6

RMSprop 0.1283 0.9555 0.0955 0.9620 38 10

EfficientNet
Adam 0.1217 0.9640 0.0780 0.9810 39 19
SGD 0.0789 0.9690 0.0458 0.9840 18 9

RMSprop 0.2129 0.9665 0.2235 0.9800 31 15

From the data in Table 5, except for VGG-16, the rest of the selected DL models reported
the best performance when trained with an SGD optimizer. A disappointing performance
was noted when ResNet50 was trained with RMSprop and Adam. Comparable performance
results can be seen from the rest of the data reported in Table 5.
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3.5. Empirical Comparison with Existing Tools

Experimental comparisons were conducted with existing tools to establish the rele-
vance of the proposed approach. We selected open-source optimization libraries imple-
mented through known algorithms. Existing tools for auto-optimization were Hyper-
opt [21], Skopt [22], SMAC [23], and KerasTuner. Hyperopt uses Bayesian optimization and
works best with classical ML models for various tasks other than computer vision. Similarly,
Skopt and SMAC provide implementations suitable for ML tasks other than computer
vision. For this reason, we chose KerasTuner from the selected optimization libraries.

KerasTuner optimizes DL models in two stages: first, it optimizes the hyperparameter
search for a hyper model and returns optimal values. Second, it builds a model with
optimal parameters and fits it into the training set. In our proposed approach, the first stage
was executed when studying the association between hyperparameter values. Multiple
experimental runs were conducted to reduce the bias of the reported results due to the
stochastic nature of machine learning experiments. The average weight of accuracy and loss
was registered to compare the performance of the existing tool and the proposed approach.

Figure 3 compares model performance when optimized using KerasTuner and the
proposed approach. We first build and train a DL model with KerasTuner while observing
the loss and accuracy for each experimental run. Then, we create a model with a similar
architecture and optimize it with our proposed approach. The top half of the figure shows
the model performance when optimized with KerasTuner. The bottom half of the figure
offers model performance when optimized with our proposed approach.
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As can be seen from Figure 3a, the model quickly converges to around 98.5% accuracy
and diverges when optimized using KerasTuner. Optimizing with our proposed approach
reveals a convergence at approximately 99.7%, as seen in Figure 3b,c, which presents
the model loss as it converges at around 10% before overfitting when optimized with
KerasTuner. The model loss in Figure 3d converges at about 5% when optimized with our
proposed approach.

From the result in Figure 3, it is apparent that the proposed approach improves
the performance of DL when compared with the existing library. There is an increase
of 1.2% in model accuracy and a decrease of 5% in loss after utilizing our proposed
approach. The proposed solution is essential in building and optimizing DL models for
image classification tasks.

3.6. Optimization of Transformer-Based Models

The proposed optimization solution was applied to a transformer-based architecture
to verify its applicability. The ViT model was trained for 100 epochs while monitoring
accuracy and loss. Figure 4 presents the model performance.
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The data in Figure 4a show that model accuracy converges at around 50% after
20 training iterations before overfitting. Training loss and validation loss improved to about
20%; as the training loss improved, the validation loss plateaued, as seen in Figure 4b.

The result in Figure 4 suggests that transformer-based models should be trained on
larger image datasets for many iterations to ensure convergence. Current experiments used
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small datasets like Fashion-MNIST and Stanford Cars. The training iteration was fixed
to 100 to provide a fair comparison with ConvNet-based models. This accounts for the
suboptimal results observed in the ViT model.

4. Discussion

This section discusses the results presented in the previous section and positions our
contributions relative to knowledge in the existing literature.

4.1. Contributions to Related Literature

Probst et al. [40] employed a statistical approach to study the importance of hyperpa-
rameter tuning and introduce tunability, signifying the gain in the model’s performance
achieved through hyperparameter tuning. However, the research paper was confined to
six classical machine learning models.

Faes et al. [41] researched the practicability of automated deep learning design by med-
ical practitioners with non-programming and DL expertise. Developed models through
the automated stream were compared with SOTA DL models on medical image classifica-
tion tasks using publicly available datasets. Results indicated comparable discriminative
performance and diagnostic properties [41].

Xu et al. [42] introduced an automatic network adaptation framework for object
detection that goes beyond searching a classification backbone. The authors proposed the
Auto-FPN framework with two modules performing an auto search: Auto-Fusion and
Auto-Head. For both modules, the search space of gradient-based architecture claimed to
be efficient with resource constraints [42].

Weerts et al. [43] introduced turning risk, an incurred loss into performance when a
hyperparameter is not tuned but left to default value. Authors asserted that a model with
default values might even outperform a model with adjustments to its hyperparameter
in some cases [43]. However, only two classical ML algorithms were experimented with:
Support Vector Machine and Random Forest.

Guo et al. [44] proposed a hierarchical trinity search framework that automatically
discovers effective architecture for object detection. Their solution employs an end-to-end
approach to discover all components and architectures of object detection simultaneously.
With much less computational overhead, experimental results suggest that the proposed
framework outperforms both manually designed and NAS-based architectures [44].

X. He, Wang, et al. [45] conducted a series of empirical evaluations to benchmark
DL models and automated model design for COVID-19 detection. A random search was
proven to deliver DL models with SOTA performance results through empirical results [45].
However, automating the optimization process of selected architectures after NAS remains
not to be seen.

Yi and Bui [46] presented a deep learning model with an automated hypermeter search
for highway traffic prediction. Their work employed a long short-term memory (LSTM)
model and a recurrent neural network (RNN) variant to build a time series model for an
intelligent transport system. Bayesian optimization is claimed to be superior to a manual
search, grid search, or random search in searching for hyperparameter configuration [46].

While the literature on AutoML already exists, to our knowledge, it is limited to
automating the design on DL models. Table 6 summarizes the research contribution to
the existing body of knowledge. Thus far, some authors have attempted to highlight the
significance of hyperparameter optimization [40,43]. Other researchers are more concerned
with automating the design of deep learning models [41,42,44,45], while [46] focuses on
automating the hyperparameter search for time series deep learning models.

Based on the reported literature, this paper concentrates on automating the optimiza-
tion of deep learning models for image classification tasks. Experimental work examines
the importance of hyperparameters and searches for the best value by automating the
optimization process. Similarly, it empirically demonstrates that the proposed approach
can improve the performance of deep learning models through automation.
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Table 6. Research contributions of existing literature.

Reference Approach ML Model(s) Contribution

[40,43] Manual Classical Investigated the importance of
hyperparameter tuning

[41,42,44,45] Auto Deep Learning Demonstrated the automated design
of DL models

[46] Auto Deep Learning
(Time Series)

Demonstrated the automated
hyperparameter search

Our Approach Auto
Deep Learning

(Image
Classification)

Investigated hyperparameter
association, demonstrated automated

optimization, proposed
hyperparameter values

4.2. Association between Batch Size and Learning Rate

Our results suggest a significant positive correlation between batch sizes and learning
rates. This implies that lower rates should be used with smaller batches for better results,
and the inverse is true for larger batches. Following the present results, previous studies
have suggested using smaller batches [47,48] and high learning rates with large batch
sizes [49]. Furthermore, batch size 32 was recommended as the default value that provides
good results [50].

Another critical finding distinctive from the previously reported results is observed
when a learning rate of 0.1 is selected. Regardless of how the batch size was iterated in all
DL models, validation accuracy was at around 50%. An implication of this finding is the
possibility that high rates plateau the performance close to a specific value. However, with
the stochastic nature of ML experiments, these results must be interpreted cautiously.

4.3. Optimization Implications

The post-automated optimization results signify that the proposed scheme can im-
prove the performance of DL models on a given image classification task. VGG-16 con-
sumed approximately an hour of training and adjusting the knobs to reduce the error rate
by 73%. Likewise, for EfficientNet, optimizing to a final accuracy took 2 h and 41 min.

Without automated optimization tools, data scientists spend hours manually training
and optimizing DL models. Additionally, the optimization process requires a good knowl-
edge of the impact of both model- and training-related parameters relative to performance
evaluation metrics. With such constraints, it is evident that building and optimizing DL for
image classification becomes a burdensome task.

However, with a fully automated machine learning pipeline, data scientists shall
be liberated from the majority of burdensome tasks involved in deploying DL models.
For this reason, the proposed automated optimization scheme becomes significant. Data
scientists can leverage such a tool during the design and optimization process, consequently
becoming more productive and efficient in completing other valuable scientific tasks in the
machine learning pipeline. This implies that data scientists will only be required to define
a task, model, and dataset and then submit it to automated machine learning tools.

4.4. Proposed Approach on Vision Transformers

The proposed tool can be applied to fine-tune and optimize transformer-based models
automatically. However, it has to be customized to incorporate ViT hyperparameters. ViT
hyperparameters include patch size, projection dimension, number of heads, number of
transformer layers, multilayer perceptron units, and the standard convent parameters. This
implies that the search space will be more extensive when compared to ConvNets.

Transformer-based models must be trained on larger datasets for long enough to
ensure convergence [51]. The number of training iterations can be set to 500 with early
stopping to control overfitting. This signifies that ViT models can be trained for up to five
times more iterations than ConvNet models.



Computers 2023, 12, 174 14 of 18

Similarly, transformer-based models can be trained with large batch sizes compared
with convent models. Our results suggest that mini batches between 16 and 64 promise
optimal performance with convents, but ViT models can be trained with 256 and 512 batches.
The results presented in Section 3.6 were obtained when the ViT model was trained using a
batch size of 256.

The proposed approach can be customized to train and optimize ViT models. The
search space must be expanded to accommodate transformer-based hyperparameters. Sim-
ilarly, training time must be long enough, with many iterations to guarantee convergence
to an optimal solution.

5. Conclusions

The main goal of this study was to amplify the understanding of AutoML, and
especially the optimization of DL models for image classification tasks. We have proposed
a framework to automate the optimization process of DL models. Four DL models and
prominent datasets for image classification challenges were selected for our empirical
evaluations. We extended our experiments to include a transformer-based model for image
classification. Our practical tests explored the association of two significant training-related
parameters: batch size and learning rate. We have demonstrated that the proposed scheme
improves the performance of DL models and significantly reduces the error rate by up to
a 73% relative drop. Similarly, we have presented the training-related parameter values
most likely to result in the improved performance of DL models for further empirical
evaluations. The particular contribution of this paper is that it introduces a tool to automate
the optimization process of DL models for image classification tasks. Instead of using brute
force and exhaustive searches, a data scientist controls the number optimization attempt
in the proposed framework. Image classification is considered as an ancient AI problem;
nevertheless, it remains worthy of attention, as an image still speaks more than a thousand
words. More research work will need to be done in efforts to fully automate these AI
task’s ML pipeline. The insights gained from this study may assist in efforts to radically
democratize the building and optimization of DL models, even for amateurs. While
computer vision tasks involve image classification, object detection, and segmentation,
implementation and empirical evaluations of the proposed solution are limited to image
classification. Similarly, a data scientist must specify a preferred DL model for a given
classification task before the optimization process. This demands a basic knowledge
of existing or custom ConvNet-based models. In the future, we will seek to improve
and deliver our automated optimization solution, which can be used as a Python library.
Similarly, developing a web interface without additional package installation requirements
allows non-practitioners to experiment and test the solution.
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Appendix A

Table A1. Training data for VGG-16.

Batch Size Learning Rate Loss Accuracy Validation Loss Validation Accuracy Epoch Time (min)

8 0.1 0.8173 0.4593 0.7953 0.4592 15 10
16 0.1 1.6638 0.4641 0.7969 0.4611 12 7
32 0.1 0.7983 0.4692 0.7938 0.4607 11 5
64 0.1 0.7955 0.4517 0.791 0.4612 10 7

128 0.1 0.7922 0.4674 0.7942 0.4615 15 8
8 0.01 0.6868 0.7148 0.3437 0.8288 32 20
16 0.01 0.5479 0.7364 0.4557 0.8245 27 17
32 0.01 0.488 0.7377 0.2931 0.8569 26 15
64 0.01 0.4046 0.7587 0.3713 0.8583 13 9

128 0.01 0.3861 0.7728 0.2908 0.8734 16 8
8 0.001 0.3983 0.8046 0.2417 0.8754 19 13
16 0.001 0.32 0.7812 0.2482 0.8672 21 12
32 0.001 0.3387 0.8232 0.2407 0.862 23 15
64 0.001 0.2725 0.8463 0.2318 0.8848 29 18

128 0.001 0.2716 0.8546 0.2368 0.8867 22 14
8 0.0001 0.2976 0.8514 0.2292 0.8925 29 17
16 0.0001 0.2524 0.8714 0.3784 0.8526 23 13
32 0.0001 0.2171 0.8784 0.1949 0.9038 13 8
64 0.0001 0.2229 0.8811 0.1945 0.9071 21 10

128 0.0001 0.2113 0.8879 0.1971 0.9107 6 11

Table A2. Training data for Inception.

Batch Size Learning Rate Loss Accuracy Validation Loss Validation Accuracy Epoch Time (min)

8 0.1 10.4708 0.4874 0.8036 0.4682 29 10
16 0.1 0.8075 0.4743 0.7765 0.4825 11 3
32 0.1 0.8416 0.4871 0.772 0.4927 11 3
64 0.1 0.795 0.4823 0.7636 0.4837 19 5

128 0.1 0.841 0.4741 0.7928 0.4715 23 7
8 0.01 0.5846 0.7213 0.2506 0.7905 18 6
16 0.01 0.6324 0.6924 0.708 0.8738 12 3

https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
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Table A2. Cont.

Batch Size Learning Rate Loss Accuracy Validation Loss Validation Accuracy Epoch Time (min)

32 0.01 0.3362 0.8246 0.1505 0.9005 16 5
64 0.01 0.2596 0.8623 0.14 0.9056 22 6

128 0.01 0.1719 0.8959 0.1472 0.909 11 3
8 0.001 0.1709 0.9022 0.1589 0.9067 33 11
16 0.001 0.1336 0.9097 0.1093 0.924 24 8
32 0.001 0.1036 0.9301 0.0986 0.926 17 5
64 0.001 0.0978 0.9283 0.1078 0.9183 11 3

128 0.001 0.1213 0.919 0.1187 0.9261 23 6
8 0.0001 0.1304 0.9203 0.1278 0.9267 37 12
16 0.0001 0.1045 0.9288 0.0908 0.9376 25 7
32 0.0001 0.067 0.9419 0.0879 0.9378 46 11
64 0.0001 0.1298 0.9247 0.0991 0.9375 21 7

128 0.0001 0.1004 0.9363 0.1062 0.9334 11 4

Table A3. Training data for EfficientNetB0.

Batch Size Learning Rate Loss Accuracy Validation Loss Validation Accuracy Epoch Time (min)

8 0.1 Nan 0.5000 Nan 0.5000 11 7
16 0.1 Nan 0.5000 Nan 0.5000 11 6
32 0.1 Nan 0.5000 Nan 0.5000 10 6
64 0.1 Nan 0.5000 Nan 0.5000 10 6

128 0.1 Nan 0.5000 Nan 0.5000 10 6
8 0.01 Nan 0.7407 Nan 0.8742 11 6
16 0.01 1264.5101 0.8159 158.342 0.8877 11 6
32 0.01 0.1818 0.8916 0.0885 0.9213 29 20
64 0.01 0.151 0.859 3.329 0.921 18 9

128 0.01 8696.4881 0.8901 145.0845 0.9306 32 16
8 0.001 0.0934 0.9253 0.0552 0.9329 17 10
16 0.001 0.0638 0.9374 0.0491 0.9369 21 10
32 0.001 0.0605 0.9374 0.0492 0.9421 17 8
64 0.001 0.0744 0.9342 0.0511 0.9441 24 13

128 0.001 0.0764 0.9345 0.0483 0.9467 12 7
8 0.0001 0.1003 0.9279 0.0488 0.9485 16 10
16 0.0001 0.065 0.9447 0.0487 0.9486 30 14
32 0.0001 0.0702 0.9427 0.0461 0.9487 11 5
64 0.0001 0.0734 0.9436 0.0985 0.9496 25 13

128 0.0001 0.0773 0.9505 0.0425 0.9546 11 5
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